355 research outputs found

    Peatland hydrology and carbon release: why small-scale process matters

    Get PDF
    Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon

    A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs

    Get PDF
    Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia’s outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR

    Comment on: “Peatland carbon stocks and burn history: Blanket bog peat core evidence highlights charcoal impacts on peat physical properties and long-term carbon storage”, by A. Heinemeyer, Q. Asena, W.L. Burn and A.L. Jones (Geo: Geography and Environment. 2018; e00063)

    Get PDF
    A recent paper by Heinemeyer et al. (2018) in this journal has suggested that the use of prescribed fire may enhance carbon accumulation in UK upland blanket bogs. We challenge this finding based on a number of concerns with the original manuscript including the lack of an unburned control, insufficient replication, unrecognised potential confounding factors, and potentially large inaccuracies in the core dating approach used to calculate carbon accumulation rates. We argue that burn‐management of peatlands is more likely to lead to carbon loss than carbon gain

    Reef fishes weaken dietary preferences after coral mortality, altering resource overlap

    Get PDF
    The direct and indirect effects of climate change can affect, and are mediated by, changes in animal behaviour. However, we often lack sufficient empirical data to assess how large-scale disturbances affect the behaviour of individuals, which scales up to influence communities. Here, we investigate these patterns by focusing on the foraging behaviour of butterflyfishes, prominent coral-feeding fishes on coral reefs, before and after a mass coral bleaching event in Iriomote, Japan. In response to 65% coral mortality, coral-feeding fishes broadened their diets, showing a significant weakening of dietary preferences across species. Multiple species reduced their consumption of bleaching-sensitive Acropora corals, while expanding their diets to consume a variety of other coral genera. This resulted in decreased dietary overlap among butterflyfishes. Behavioural changes in response to bleaching may increase resilience of coral reef fishes in the short term. However, coral mortality has reduced populations of coral-feeders world-wide, indicating the changes in feeding behaviour we document here may not be sufficient to ensure long-term resilience of butterflyfishes on coral reefs

    Many happy returns: combining insights from the environmental and behavioural sciences to understand what is required to make reusable packaging mainstream

    Get PDF
    The introduction of reusable packaging systems (both refill and return) has the potential to significantly reduce waste from single-use plastic packaging. However, for these schemes to be successful, both the environmental impact and the willingness of consumers to engage with such systems need to be carefully considered. This paper combines and discusses two complementary studies: (i) a life cycle assessment comparing the environmental impacts of single-use, refillable, and returnable containers for a takeaway meal, and (ii) a large online survey of UK adults exploring what types of product and packaging consumers are willing to reuse, how, and why. The findings of the life cycle assessment indicate that reusable containers outperform single-use plastic containers on most measures of environmental impact. The survey found that given the choice of disposal, reuse or recycling, that recycling is the preferred method of dealing with packaging once empty in the UK, and that people's decisions with regards to what types of packaging they are willing to reuse are largely driven by the aspects of the packaging itself (e.g., material and type) rather than the nature of the product inside of the packaging (e.g., state of matter of the contents). The survey also showed that people were more willing to engage in reuse systems with which they were already familiar. Additionally the language used to describe these schemes and the term ‘reuse’ needs to be considered. Combined, these factors can be used to determine the best packaging reuse system for a given product and situation

    Peatland pools are tightly coupled to the contemporary carbon cycle

    Get PDF
    Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2) and methane (CH4). The radiocarbon content (14C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14C and stable C (δ13C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2. Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%–75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export

    Modeling what we sample and sampling what we model: challenges for zooplankton model assessment

    Get PDF
    Zooplankton are the intermediate trophic level between phytoplankton and fish, and are an important component of carbon and nutrient cycles, accounting for a large proportion of the energy transfer to pelagic fishes and the deep ocean. Given zooplankton's importance, models need to adequately represent zooplankton dynamics. A major obstacle, though, is the lack of model assessment. Here we try and stimulate the assessment of zooplankton in models by filling three gaps. The first is that many zooplankton observationalists are unfamiliar with the biogeochemical, ecosystem, size-based and individual-based models that have zooplankton functional groups, so we describe their primary uses and how each typically represents zooplankton. The second gap is that many modelers are unaware of the zooplankton data that are available, and are unaccustomed to the different zooplankton sampling systems, so we describe the main sampling platforms and discuss their strengths and weaknesses for model assessment. Filling these gaps in our understanding of models and observations provides the necessary context to address the last gap—a blueprint for model assessment of zooplankton. We detail two ways that zooplankton biomass/abundance observations can be used to assess models: data wrangling that transforms observations to be more similar to model output; and observation models that transform model outputs to be more like observations. We hope that this review will encourage greater assessment of zooplankton in models and ultimately improve the representation of their dynamics

    Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    Get PDF
    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. (C) 2009 Elsevier Ltd. All rights reserved.Environment Canada’s Pesticide Science FundFC
    corecore