6 research outputs found

    Effects of interactions between anthropogenic stressors and recurring perturbations on ecosystem resilience and collapse

    Full text link
    Insights into declines in ecosystem resilience and their causes and effects can inform preemptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services, and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, nonlinear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands known as upland swamps in southeastern Australia. We hypothesized that underground mining (stressor) reduces resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining. After landscape fire, we compared responses of multiple state variables representing ecosystem structure, composition, and function in swamps within the mining footprint with unmined reference swamps. Soil moisture declined without recovery in swamps with mine subsidence (i.e., undermined), but was maintained in reference swamps over 8 years (effect size 1.8). Relative to burned reference swamps, burned undermined swamps showed greater loss of peat via substrate combustion; reduced cover, height, and biomass of regenerating vegetation; reduced postfire plant species richness and abundance; altered plant species composition; increased mortality rates of woody plants; reduced postfire seedling recruitment; and extirpation of a hydrophilic animal. Undermined swamps therefore showed strong symptoms of postfire ecosystem collapse, whereas reference swamps regenerated vigorously. We found that an anthropogenic stressor diminished the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver. Efectos de las interacciones entre los estresantes antropogénicos y las perturbaciones recurrentes sobre la resiliencia y el colapso de los ecosistemas

    Resilience and Collapse of the Newnes Plateau Shrub Swamp - Field observations and measurements

    No full text
    Data from field work, including measurements and observations, formatted for data analysi

    Earthquake safety in India: achievements, challenges and opportunities

    Get PDF
    The Indian subcontinent has suffered some of the greatest earthquakes in the world. The earthquakes of the late nineteenth and early twentieth centuries triggered a number of early advances in science and engineering related to earthquakes that are discussed here. These include the development of early codes and earthquake-resistant housing after the 1935 Quetta earthquake in Baluchistan, and strengthening techniques implemented after the 1941 Andaman Islands earthquake, discovered by the author in remote islands of India. Activities in the late 1950s to institutionalize earthquake engineering in the country are also discussed. Despite these early developments towards seismic safety, moderate earthquakes in India continue to cause thousands of deaths, indicating the poor seismic resilience of the built environment. The Bhuj earthquake of 2001 highlighted a striking disregard for structural design principles and quality of construction. This earthquake was the first instance of an earthquake causing collapses of modern multi-storey buildings in India, and it triggered unprecedented awareness amongst professionals, academics and the general public. The earthquake led to the further development of the National Information Centre of Earthquake Engineering and the establishment of a comprehensive 4-year National Programme on Earthquake Engineering Education that was carried out by the seven Indian Institutes of Technology and the Indian Institute of Science. Earthquake engineering is a highly context-specific discipline and there are many engineering problems where appropriate solutions need to be found locally. Confined masonry construction is one such building typology that the author has been championing for the subcontinent. Development of the student hostels and staff and faculty housing on the new 400-acre campus of the Indian Institute of Technology Gandhinagar has provided an opportunity to adopt this construction typology on a large scale, and is addressed in the monograph. The vulnerability of the building stock in India is also evident from the occasional news reports of collapses of buildings under construction or during rains (without any earthquake shaking). Given India’s aspirations to be counted as one of the world’s prosperous countries, there is a great urgency to address the safety of our built environment. There is a need: to create a more professional environment for safe construction, including a system for code enforcement and building inspection; for competence-based licensing of civil and structural engineers; for training and education of all stakeholders in the construction chain; to build a research and development culture for seismic safety; to encourage champions of seismic safety; to effectively use windows of opportunity provided by damaging earthquakes; to focus on new construction as opposed to retrofitting existing buildings; and to frame the problem in the broader context of overall building safety rather than the specific context of earthquakes. Sustained long-term efforts are required to address this multi-faceted complex problem of great importance to the future development of India. While the context of this paper is India, many of the observations may be valid and useful for other earthquake-prone countriesby Sudhir K. Jai
    corecore