190 research outputs found

    Investigating the comparative effects of abattoir waste (ThalloTM) organomineral ferti-lizer and inorganic NPK fertilizer on wheat grain and ryegrass yields and their nutrient uptakes

    Get PDF
    Purpose: The study examines the efficacy of using recycled abattoir waste fertilizer as a sustainable nutrient input for crop Production. Method: Two pot experiments were set up in a controlled environment room to examine biomass yields of ryegrass (Lolium perenne AberMagic), grain yields of spring wheat (Triticum aestivum KWS Cochise), and their micro and macronutrient uptakes, respectively, in an abattoir waste organomineral fertilizer amended soil compared to those treated with inorganic NPK fertilizer. Phosphorus was added at rates of 0, 25, 50, 100, 200, 300, 400, 500, 600, 800, 1000, and 1200 mg P kg-1 in a low P south-west England soil. Results: Total biomass yields of ryegrass in the NPK treatments were higher at application rates greater than 800 mg P kg-1 soil compared with their corresponding abattoir waste organomineral fertilizer (ThalloTM) treatments. Total wheat dry grain weights increased with P addition rates in both the ThalloTM and NPK amended soils until the application rates exceeded 800 mg P kg-1 when the dry grain weights started to decline. Micronutrient concentrations in grass produced from ThalloTM fertilizer-amended soils were similar to those from their corresponding NPK fertilizer treatments. Conclusion: This study demonstrated that if the ThalloTM is added at rates not exceeding 200 mg P kg-1 soil to 300 mg P kg-1 soil, it can serve as a sustainable and cost-effective alternative P source for ryegrass and wheat grain production. However, its application did not increase the micronutrient density of ryegrass or wheat grain any more than inorganic NPK additions

    Flux-Enabled Exploration of the Role of Sip1 in galactose yeast metabolism

    Get PDF
    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium

    Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil: A potential radiosensitizer

    Get PDF
    Grant Nos. PD/BD/114447/2016 and PD/BD/114452/2016. researcher position No. IF-FCT IF/00380/2014. Doctoral Training Programme (RaBBiT, PD/00193/2012). S.D. acknowledges support from FWF (P30332). Polish National Science Center (NCN) under the Grant No. UMO-2014/14/A/ST4/00405 (J. R.).5-trifluoromethanesulfonyl-uracil (OTfU), a recently proposed radiosensitizer, is decomposed in the gas-phase by attachment of low-energy electrons. OTfU is a derivative of uracil with a triflate (OTf) group at the C5-position, which substantially increases its ability to undergo effective electron-induced dissociation. We report a rich assortment of fragments formed upon dissociative electron attachment (DEA), mostly by simple bond cleavages (e.g., dehydrogenation or formation of OTf-). The most favorable DEA channel corresponds to the formation of the triflate anion alongside with the reactive uracil-5-yl radical through the cleavage of the O-C5 bond, particularly at about 0 eV. Unlike for halouracils, the parent anion was not detected in our experiments. The experimental findings are accounted by a comprehensive theoretical study carried out at the M06-2X/aug-cc-pVTZ level. The latter comprises the thermodynamic thresholds for the formation of the observed anions calculated under the experimental conditions (383.15 K and 3 Ă— 10-11 atm). The energy-resolved ion yield of the dehydrogenated parent anion, (OTfU-H)-, is discussed in terms of vibrational Feshbach resonances arising from the coupling between the dipole bound state and vibrational levels of the transient negative ion. We also report the mass spectrum of the cations obtained through ionization of OTfU by electrons with a kinetic energy of 70 eV. The current study endorses OTfU as a potential radiosensitizer agent with possible applications in radio-chemotherapy.publishersversionpublishe

    Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway

    Get PDF
    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway

    A microbial supply chain for production of the anti-cancer drug vinblastine

    Get PDF
    International audienceAbstract Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine 1 . As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus , which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale 2,3 . Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues

    IBD LIVE Case Series—Case 6: Persistent Skin Lesions in a Patient with Crohn's Disease: You Hear Hoof Beats and Discover a Zebra

    Get PDF
    LEARNING OBJECTIVES After completing this IBD LIVE-CME activity, physicians should be better able to: 1. Explain the side effects of medications used to treat IBD, particularly anti-TNFs. 2. Recognize the various types of skin lesions that may occur in IBD patients, focusing on those that arise among patients on immunosuppressants. 3. Be cognizant of the presentation and treatment of pyoderma gangrenosum in IBD patients. 4. Describe the various types of mycobacterial infections that may occur among IBD patients, especially those that are on anti-TNFs. 5. Describe the risk factors for developing a Mycobacterial marinum infection and how it may present dermatologically. 6. Explain how to diagnose and treat a Mycobacterial marinum infection

    Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B<sub>2</sub> Biosynthesis

    Get PDF
    Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. Although β-amino acid loading in the fluvirucin B2 polyketide pathway was proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. Here we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferases to selectively transfer β-amino acids onto a polyketide synthase (PKS) loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms

    Production of jet fuel precursor monoterpenoids from engineered Escherichia coli

    Get PDF
    Monoterpenes (C10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes. Biotechnol. Bioeng. 2017;114: 1703-1712. © 2017 Wiley Periodicals, Inc

    HER1-Targeted 86Y-Panitumumab Possesses Superior Targeting Characteristics than 86Y-Cetuximab for PET Imaging of Human Malignant Mesothelioma Tumors Xenografts

    Get PDF
    Malignant mesothelioma (MM), a rare form of cancer is often associated with previous exposure to fibrous minerals, such as asbestos. Asbestos exposure increases HER1-activity and expression in pre-clinical models. Additionally, HER1 over-expression is observed in the majority of MM cases. In this study, the utility of HER1-targeted chimeric IgG(1), cetuximab, and a human IgG(2), panitumumab, radiolabeled with (86)Y, were evaluated for PET imaging to detect MM non-invasively in vivo, and to select an antibody candidate for radioimmunotherapy (RIT).Radioimmunoconjugates (RICs) of cetuximab and panitumumab were prepared by conjugation with CHX-A''-DTPA followed by radiolabeling with (86)Y. The HER1 expression of NCI-H226, NCI-H2052, NCI-H2452 and MSTO-211H human mesothelioma cells was characterized by flow cytometry. In vivo biodistribution, pharmacokinetic analysis, and PET imaging were performed in tumor bearing athymic mice.In vivo studies demonstrated high HER1 tumor uptake of both RICs. Significant reduction in tumor uptake was observed in mice co-injected with excess mAb (0.1 mg), demonstrating that uptake in the tumor was receptor specific. Significant differences were observed in the in vivo characteristics of the RICs. The blood clearance T(½)α of (86)Y-cetuximab (0.9-1.1 h) was faster than (86)Y-panitumumab (2.6-3.1 h). Also, the tumor area under the curve (AUC) to liver AUC ratios of (86)Y-panitumumab were 1.5 to 2.5 times greater than (86)Y-cetuximab as observed by the differences in PET tumor to background ratios, which could be critical when imaging orthotopic tumors and concerns regarding radiation doses to normal organs such as the liver.This study demonstrates the more favorable HER1-targeting characteristics of (86)Y-panitumumab than (86)Y-cetuximab for non-invasive assessment of the HER1 status of MM by PET imaging. Due to lower liver uptake, panitumumab based immunoconjugates may fare better in therapy than corresponding cetuximab based immunoconjugates

    Renewable production of high density jet fuel precursor sesquiterpenes from <i>Escherichia coli</i>

    Get PDF
    Abstract Background Aviation fuels are an important target of biofuels research due to their high market demand and competitive price. Isoprenoids have been demonstrated as good feedstocks for advanced renewable jet fuels with high energy density, high heat of combustion, and excellent cold-weather performance. In particular, sesquiterpene compounds (C15), such as farnesene and bisabolene, have been identified as promising jet fuel candidates. Results In this study, we explored three sesquiterpenes—epi-isozizaene, pentalenene and α-isocomene—as novel jet fuel precursors. We performed a computational analysis to calculate the energy of combustion of these sesquiterpenes and found that their specific energies are comparable to commercial jet fuel A-1. Through heterologous MVA pathway expression and promoter engineering, we produced 727.9 mg/L epi-isozizaene, 780.3 mg/L pentalenene and 77.5 mg/L α-isocomene in Escherichia coli and 344 mg/L pentalenene in Saccharomyces cerevisiae. We also introduced a dynamic autoinduction system using previously identified FPP-responsive promoters for inducer-free production and managed to achieve comparable amounts of each compound. Conclusion We produced tricyclic sesquiterpenes epi-isozizaene, pentalenene and α-isocomene, promising jet fuel feedstocks at high production titers, providing novel, sustainable alternatives to petroleum-based jet fuels
    • …
    corecore