141 research outputs found

    Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses

    Get PDF
    Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells

    Urinary C-Peptide Measurement as a Marker of Nutritional Status in Macaques

    Get PDF
    Studies of the nutritional status of wild animals are important in a wide range of research areas such as ecology, behavioural ecology and reproductive biology. However, they have so far been strongly limited by the indirect nature of the available non-invasive tools for the measurement of individual energetic status. The measurement of urinary C-peptide (UCP), which in humans and great apes shows a close link to individual nutritional status, may be a more direct, non-invasive tool for such studies in other primates as well and possibly even in non-primate mammals. Here, we test the suitability of UCPs as markers of nutritional status in non-hominid primates, investigating relationships between UCPs and body-mass-index (BMI), skinfold fatness, and plasma C-peptide levels in captive and free-ranging macaques. We also conducted a food reduction experiment, with daily monitoring of body weight and UCP levels. UCP levels showed significant positive correlations with BMI and skinfold fatness in both captive and free-ranging animals and with plasma C-peptide levels in captive ones. In the feeding experiment, UCP levels were positively correlated with changes in body mass and were significantly lower during food reduction than during re-feeding and the pre-experimental control condition. We conclude that UCPs may be used as reliable biomarkers of body condition and nutritional status in studies of free-ranging catarrhines. Our results open exciting opportunities for energetic studies on free-ranging primates and possibly also other mammals

    Pαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1

    Get PDF
    During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function

    Role of Synucleins in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-β protein (Aβ) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of α-synuclein (α-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Aβ and Tau; however, recent studies suggest that α-syn might also play a role in the pathogenesis of AD. For example, fragments of α-syn can associate with amyloid plaques and Aβ promotes the aggregation of α-syn in vivo and worsens the deficits in α-syn tg mice. Moreover, α-syn has also been shown to accumulate in limbic regions in AD, Down’s syndrome, and familial AD cases. Aβ and α-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Aβ and α-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Aβ and α-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD

    The Value of Preseason Screening for Injury Prediction: The Development and Internal Validation of a Multivariable Prognostic Model to Predict Indirect Muscle Injury Risk in Elite Football (Soccer) Players

    Get PDF
    © 2020, The Author(s). Background: In elite football (soccer), periodic health examination (PHE) could provide prognostic factors to predict injury risk. Objective: To develop and internally validate a prognostic model to predict individualised indirect (non-contact) muscle injury (IMI) risk during a season in elite footballers, only using PHE-derived candidate prognostic factors. Methods: Routinely collected preseason PHE and injury data were used from 152 players over 5 seasons (1st July 2013 to 19th May 2018). Ten candidate prognostic factors (12 parameters) were included in model development. Multiple imputation was used to handle missing values. The outcome was any time-loss, index indirect muscle injury (I-IMI) affecting the lower extremity. A full logistic regression model was fitted, and a parsimonious model developed using backward-selection to remove factors that exceeded a threshold that was equivalent to Akaike’s Information Criterion (alpha 0.157). Predictive performance was assessed through calibration, discrimination and decision-curve analysis, averaged across all imputed datasets. The model was internally validated using bootstrapping and adjusted for overfitting. Results: During 317 participant-seasons, 138 I-IMIs were recorded. The parsimonious model included only age and frequency of previous IMIs; apparent calibration was perfect, but discrimination was modest (C-index = 0.641, 95% confidence interval (CI) = 0.580 to 0.703), with clinical utility evident between risk thresholds of 37–71%. After validation and overfitting adjustment, performance deteriorated (C-index = 0.589 (95% CI = 0.528 to 0.651); calibration-in-the-large = − 0.009 (95% CI = − 0.239 to 0.239); calibration slope = 0.718 (95% CI = 0.275 to 1.161)). Conclusion: The selected PHE data were insufficient prognostic factors from which to develop a useful model for predicting IMI risk in elite footballers. Further research should prioritise identifying novel prognostic factors to improve future risk prediction models in this field. Trial registration: NCT03782389
    corecore