33 research outputs found

    Novel Phases and Reentrant Melting of Two Dimensional Colloidal Crystals

    Full text link
    We investigate two-dimensional (2d) melting in the presence of a one-dimensional (1d) periodic potential as, for example, realized in recent experiments on 2d colloids subjected to two interfering laser beams. The topology of the phase diagram is found to depend primarily on two factors: the relative orientation of the 2d crystal and the periodic potential troughs, which select a set of Bragg planes running parallel to the troughs, and the commensurability ratio p= a'/d of the spacing a' between these Bragg planes to the period d of the periodic potential. The complexity of the phase diagram increases with the magnitude of the commensurabilty ratio p. Rich phase diagram, with ``modulated liquid'', ``floating'' and ``locked floating'' solid and smectic phases are found. Phase transitions between these phases fall into two broad universality classes, roughening and melting, driven by the proliferation of discommensuration walls and dislocations, respectively. We discuss correlation functions and the static structure factor in these phases and make detailed predictions of the universal features close to the phase boundaries. We predict that for charged systems with highly screened short-range interactions these melting transitions are generically reentrant as a function of the strength of the periodic potential, prediction that is in accord with recent 2d colloid experiments. Implications of our results for future experiments are also discussed.Comment: 37 pages, 24 figure

    Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage

    Get PDF
    Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio

    Minimal Model Holography

    Full text link
    We review the duality relating 2d W_N minimal model CFTs, in a large N 't Hooft like limit, to higher spin gravitational theories on AdS_3.Comment: 54 pages, 1 figure; Contribution to J. Phys. A special volume on "Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasiliev. v2. minor change

    Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems

    Get PDF
    Author manuscript; available in PMC 2012 March 1.We investigate the biophysical characteristics of healthy human red blood cells (RBCs) traversing microfluidic channels with cross-sectional areas as small as 2.7 × 3 μm. We combine single RBC optical tweezers and flow experiments with corresponding simulations based on dissipative particle dynamics (DPD), and upon validation of the DPD model, predictive simulations and companion experiments are performed in order to quantify cell deformation and pressure–velocity relationships for different channel sizes and physiologically relevant temperatures. We discuss conditions associated with the shape transitions of RBCs along with the relative effects of membrane and cytosol viscosity, plasma environments, and geometry on flow through microfluidic systems at physiological temperatures. In particular, we identify a cross-sectional area threshold below which the RBC membrane properties begin to dominate its flow behavior at room temperature; at physiological temperatures this effect is less profound.Singapore-MIT Alliance for Research and TechnologyUnited States. National Institutes of Health (National Heart, Lung, and Blood Institute Award R01HL094270

    Probing non-standard interactions at Daya Bay

    Get PDF
    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by theta(13), making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and theta(13) that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds similar to 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    The Myth of Equality in the Employment Relation

    Get PDF
    Although it is widely understood that employers and employees are not equally situated, we fail adequately to account for this inequality in the law governing their relationship. We can best understand this inequality in terms of status, which encompasses one’s level of income, leisure and discretion. For a variety of misguided reasons, contract law has been historically highly resistant to the introduction of status-based principles. Courts have preferred to characterize the unfavorable circumstances that many employees face as the product of unequal bargaining power. But bargaining power disparity does not capture the moral problem raised by inequality in the employment relation, and thus, it has failed to inspire any meaningful attempt to address that inequality. By contrast, a status-based approach would motivate several common sense doctrinal changes. The persistent myth of equality is still more paradoxical in the context of labor law. Due to political constraints and several sources of uncertainty about its future, the National Labor Relations Act was limited to a bare bones framework for collective bargaining. Later amendments and judicial interpretations entrenched a strictly procedural interpretation of the Act oriented toward the goal of minimizing commercial disruption rather than disrupting status inequality. The present regime sustains a false image of unions as equal in strength to employers, in need of only an illusive level playing field. As a result, it does not effectively mitigate the negative dimensions of social status stemming from employment. A few modest changes would help re-orient or at least broaden the Act so that unions can play a meaningful role in mitigating status inequality
    corecore