147 research outputs found

    Dynamic Set Intersection

    Full text link
    Consider the problem of maintaining a family FF of dynamic sets subject to insertions, deletions, and set-intersection reporting queries: given S,SFS,S'\in F, report every member of SSS\cap S' in any order. We show that in the word RAM model, where ww is the word size, given a cap dd on the maximum size of any set, we can support set intersection queries in O(dw/log2w)O(\frac{d}{w/\log^2 w}) expected time, and updates in O(logw)O(\log w) expected time. Using this algorithm we can list all tt triangles of a graph G=(V,E)G=(V,E) in O(m+mαw/log2w+t)O(m+\frac{m\alpha}{w/\log^2 w} +t) expected time, where m=Em=|E| and α\alpha is the arboricity of GG. This improves a 30-year old triangle enumeration algorithm of Chiba and Nishizeki running in O(mα)O(m \alpha) time. We provide an incremental data structure on FF that supports intersection {\em witness} queries, where we only need to find {\em one} eSSe\in S\cap S'. Both queries and insertions take O\paren{\sqrt \frac{N}{w/\log^2 w}} expected time, where N=SFSN=\sum_{S\in F} |S|. Finally, we provide time/space tradeoffs for the fully dynamic set intersection reporting problem. Using MM words of space, each update costs O(MlogN)O(\sqrt {M \log N}) expected time, each reporting query costs O(NlogNMop+1)O(\frac{N\sqrt{\log N}}{\sqrt M}\sqrt{op+1}) expected time where opop is the size of the output, and each witness query costs O(NlogNM+logN)O(\frac{N\sqrt{\log N}}{\sqrt M} + \log N) expected time.Comment: Accepted to WADS 201

    Algorithms in the Ultra-Wide Word Model

    Full text link
    The effective use of parallel computing resources to speed up algorithms in current multi-core parallel architectures remains a difficult challenge, with ease of programming playing a key role in the eventual success of various parallel architectures. In this paper we consider an alternative view of parallelism in the form of an ultra-wide word processor. We introduce the Ultra-Wide Word architecture and model, an extension of the word-RAM model that allows for constant time operations on thousands of bits in parallel. Word parallelism as exploited by the word-RAM model does not suffer from the more difficult aspects of parallel programming, namely synchronization and concurrency. For the standard word-RAM algorithms, the speedups obtained are moderate, as they are limited by the word size. We argue that a large class of word-RAM algorithms can be implemented in the Ultra-Wide Word model, obtaining speedups comparable to multi-threaded computations while keeping the simplicity of programming of the sequential RAM model. We show that this is the case by describing implementations of Ultra-Wide Word algorithms for dynamic programming and string searching. In addition, we show that the Ultra-Wide Word model can be used to implement a nonstandard memory architecture, which enables the sidestepping of lower bounds of important data structure problems such as priority queues and dynamic prefix sums. While similar ideas about operating on large words have been mentioned before in the context of multimedia processors [Thorup 2003], it is only recently that an architecture like the one we propose has become feasible and that details can be worked out.Comment: 28 pages, 5 figures; minor change

    Query Filtering with Low-Dimensional Local Embeddings

    Get PDF
    The concept of local pivoting is to partition a metric space so that each element in the space is associated with precisely one of a fixed set of reference objects or pivots. The idea is that each object of the data set is associated with the reference object that is best suited to filter that particular object if it is not relevant to a query, maximising the probability of excluding it from a search. The notion does not in itself lead to a scalable search mechanism, but instead gives a good chance of exclusion based on a tiny memory footprint and a fast calculation. It is therefore most useful in contexts where main memory is at a premium, or in conjunction with another, scalable, mechanism. In this paper we apply similar reasoning to metric spaces which possess the four-point property, which notably include Euclidean, Cosine, Triangular, Jensen-Shannon, and Quadratic Form. In this case, each element of the space can be associated with two reference objects, and a four-point lower-bound property is used instead of the simple triangle inequality. The probability of exclusion is strictly greater than with simple local pivoting; the space required per object and the calculation are again tiny in relative terms. We show that the resulting mechanism can be very effective. A consequence of using the four-point property is that, for m reference points, there arèarè m 2 ´ pivot pairs to choose from, giving a very good chance of a good selection being available from a small number of distance calculations. Finding the best pair has a quadratic cost with the number of references ; however, we provide experimental evidence that good heuristics exist. Finally, we show how the resulting mechanism can be integrated with a more scalable technique to provide a very significant performance improvement, for a very small overhead in build-time and memory cost. Keywords: metric search · extreme pivoting · supermetric space · four-point property · pivot based index 2 Chávez et al

    Adsorption and reaction of CO on (Pd–)Al2O3 and (Pd–)ZrO2: vibrational spectroscopy of carbonate formation

    Get PDF
    γ-Alumina is widely used as an oxide support in catalysis, and palladium nanoparticles supported by alumina represent one of the most frequently used dispersed metals. The surface sites of the catalysts are often probed via FTIR spectroscopy upon CO adsorption, which may result in the formation of surface carbonate species. We have examined this process in detail utilizing FTIR to monitor carbonate formation on γ-alumina and zirconia upon exposure to isotopically labelled and unlabelled CO and CO2. The same was carried out for well-defined Pd nanoparticles supported on Al2O3 or ZrO2. A water gas shift reaction of CO with surface hydroxyls was detected, which requires surface defect sites and adjacent OH groups. Furthermore, we have studied the effect of Cl synthesis residues, leading to strongly reduced carbonate formation and changes in the OH region (isolated OH groups were partly replaced or were even absent). To corroborate this finding, samples were deliberately poisoned with Cl to an extent comparable to that of synthesis residues, as confirmed by Auger electron spectroscopy. For catalysts prepared from Cl-containing precursors a new CO band at 2164 cm−1 was observed in the carbonyl region, which was ascribed to Pd interacting with Cl. Finally, the FTIR measurements were complemented by quantification of the amount of carbonates formed via chemisorption, which provides a tool to determine the concentration of reactive defect sites on the alumina surface

    Ectoparasite activity during incubation increases microbial growth on avian eggs

    Get PDF
    We thank Estefanía López for lab work, and Tomás Pérez-Contreras and Emilio Pagani-Núñez for facilitating collection of some of the flies used in manipulations. We also thank Ángela Martínez-García for help with management of ARISA data and Natalia Juárez and Deseada Parejo for the pictures of owls and roller clutches, respectively. We appreciate the comments provided by Dr. Adèle Mennerat and five anonymous referees on earlier versions of the manuscript.All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.While direct detrimental effects of parasites on hosts are relatively well documented, other more subtle but potentially important effects of parasitism are yet unexplored. Biological activity of ectoparasites, apart from skin injuries and blood-feeding, often results in blood remains, or parasite faeces that accumulate and modify the host environment. In this way, ectoparasite activities and remains may increase nutrient availability that may favour colonization and growth of microorganisms including potential pathogens. Here, by the experimental addition of hematophagous flies (Carnus hemapterus, a common ectoparasite of birds) to nests of spotless starlings Sturnus unicolor during incubation, we explore this possible side effect of parasitism which has rarely, if ever, been investigated. Results show that faeces and blood remains from parasitic flies on spotless starling eggshells at the end of incubation were more abundant in experimental than in control nests. Moreover, eggshell bacterial loads of different groups of cultivable bacteria including potential pathogens, as well as species richness of bacteria in terms of Operational Taxonomic Units (OTUs), were also higher in experimental nests. Finally, we also found evidence of a link between eggshell bacterial loads and increased embryo mortality, which provides indirect support for a bacterial-mediated negative effect of ectoparasitism on host offspring. Trans-shell bacterial infection might be one of the main causes of embryo death and, consequently, this hitherto unnoticed indirect effect of ectoparasitism might be widespread in nature and could affect our understanding of ecology and evolution of host-parasite interactionsFinancial support was provided by Spanish Ministerio de Economía y Competitividad and FEDER (CGL2013-48193-C3-1-P, CGL2013-48193-C3-2-P), by JAE programme to DMG and MRR, and by Juan de la Cierva and Ramón y Cajal programmes to GT. All procedures were conducted under licence from the Environmental Department of the Regional Government of Andalucía, Spain (reference SGYB/FOA/AFR)

    Long-Term Outcomes with Subcutaneous C1-Inhibitor Replacement Therapy for Prevention of Hereditary Angioedema Attacks

    Get PDF
    Background For the prevention of attacks of hereditary angioedema (HAE), the efficacy and safety of subcutaneous human C1-esterase inhibitor (C1-INH[SC]; HAEGARDA, CSL Behring) was established in the 16-week Clinical Study for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy (COMPACT). Objective To assess the long-term safety, occurrence of angioedema attacks, and use of rescue medication with C1-INH(SC). Methods Open-label, randomized, parallel-arm extension of COMPACT across 11 countries. Patients with frequent angioedema attacks, either study treatment-naive or who had completed COMPACT, were randomly assigned (1:1) to 40 IU/kg or 60 IU/kg C1-INH(SC) twice per week, with conditional uptitration to optimize prophylaxis (ClinicalTrials.gov registration no. NCT02316353). Results A total of 126 patients with a monthly attack rate of 4.3 in 3 months before entry in COMPACT were enrolled and treated for a mean of 1.5 years; 44 patients (34.9%) had more than 2 years of exposure. Mean steady-state C1-INH functional activity increased to 66.6% with 60 IU/kg. Incidence of adverse events was low and similar in both dose groups (11.3 and 8.5 events per patient-year for 40 IU/kg and 60 IU/kg, respectively). For 40 IU/kg and 60 IU/kg, median annualized attack rates were 1.3 and 1.0, respectively, and median rescue medication use was 0.2 and 0.0 times per year, respectively. Of 23 patients receiving 60 IU/kg for more than 2 years, 19 (83%) were attack-free during months 25 to 30 of treatment. Conclusions In patients with frequent HAE attacks, long-term replacement therapy with C1-INH(SC) is safe and exhibits a substantial and sustained prophylactic effect, with the vast majority of patients becoming free from debilitating disease symptoms

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes

    Get PDF
    corecore