13,083 research outputs found
Hamiltonian and measuring time for analog quantum search
We derive in this study a Hamiltonian to solve with certainty the analog
quantum search problem analogue to the Grover algorithm. The general form of
the initial state is considered. Since the evaluation of the measuring time for
finding the marked state by probability of unity is crucially important in the
problem, especially when the Bohr frequency is high, we then give the exact
formula as a function of all given parameters for the measuring time.Comment: 5 page
Exosuit-induced improvements in walking after stroke: comprehensive analysis on gait energetics and biomechanics
Outstanding Poster Presentation Finalis
A V-Diagram for the Design of Integrated Health Management for Unmanned Aerial Systems
Designing Integrated Vehicle Health Management (IVHM) for Unmanned Aerial Systems (UAS) is inherently complex. UAS are a system of systems (SoS) and IVHM is a product-service, thus the designer has to take into account many factors, such as: the design of the other systems of the UAS (e.g. engines, structure, communications), the split of functions between elements of the UAS, the intended operation/mission of the UAS, the cost verses benefit of monitoring a system/component/part, different techniques for monitoring the health of the UAS, optimizing the health of the fleet and not just the individual UAS, amongst others. The design of IVHM cannot sit alongside, or after, the design of UAS, but itself be integrated into the overall design to maximize IVHM’s potential.
Many different methods exist to help design complex products and manage the process. One method used is the V-diagram which is based on three concepts: decomposition & definition; integration & testing; and verification & validation. This paper adapts the V-diagram so that it can be used for designing IVHM for UAS. The adapted v-diagram splits into different tracks for the different system elements of the UAS and responses to health states (decomposition and definition). These tracks are then combined into an overall IVHM provision for the UAS (integration and testing), which can be verified and validated. The stages of the adapted V-diagram can easily be aligned with the stages of the V-diagram being used to design the UAS bringing the design of the IVHM in step with the overall design process. The adapted V-diagram also allows the design IVHM for a UAS to be broken down in to smaller tasks which can be assigned to people/teams with the relevant competencies. The adapted V-diagram could also be used to design IVHM for other SoS and other vehicles or products
Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models
This paper extends our Real-Time Maude formalization of the semantics of flat
Ptolemy II discrete-event (DE) models to hierarchical models, including modal
models. This is a challenging task that requires combining synchronous
fixed-point computations with hierarchical structure. The synthesis of a
Real-Time Maude verification model from a Ptolemy II DE model, and the formal
verification of the synthesized model in Real-Time Maude, have been integrated
into Ptolemy II, enabling a model-engineering process that combines the
convenience of Ptolemy II DE modeling and simulation with formal verification
in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.
Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs
Comparative Review of the Treatment Methodologies of Carotid Stenosis
The treatment of carotid stenosis entails three methodologies, namely, medical management, carotid angioplasty and stenting (CAS), as well as carotid endarterectomy (CEA). The North American Symptomatic Carotid Endarterectomy Trial (NASCET) and European Carotid Surgery Trial (ECST) have shown that symptomatic carotid stenosis greater than 70% is best treated with CEA. In asymptomatic patients with carotid stenosis greater than 60%, CEA was more beneficial than treatment with aspirin alone according to the Asymptomatic Carotid Atherosclerosis (ACAS) and Asymptomatic Carotid Stenosis Trial (ACST) trials. When CAS is compared with CEA, the CREST resulted in similar rates of ipsilateral stroke and death rates regardless of symptoms. However, CAS not only increased adverse effects in women, it also amplified stroke rates and death in elderly patients compared with CEA. CAS can maximize its utility in treating focal restenosis after CEA and patients with overwhelming cardiac risk or prior neck irradiation. When performing CEA, using a patch was equated to a more durable result than primary closure, whereas eversion technique is a new methodology deserving a spotlight. Comparing the three major treatment strategies of carotid stenosis has intrinsic drawbacks, as most trials are outdated and they vary in their premises, definitions, and study designs. With the newly codified best medical management including antiplatelet therapies with aspirin and clopidogrel, statin, antihypertensive agents, strict diabetes control, smoking cessation, and life style change, the current trials may demonstrate that asymptomatic carotid stenosis is best treated with best medical therapy. The ongoing trials will illuminate and reshape the treatment paradigm for symptomatic and asymptomatic carotid stenosis
Secrecy content of two-qubit states
We analyze the set of two-qubit states from which a secret key can be
extracted by single-copy measurements plus classical processing of the
outcomes. We introduce a key distillation protocol and give the corresponding
necessary and sufficient condition for positive key extraction. Our results
imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66},
060302 (2002), for a secure key distribution using the six-state scheme is
tight. Remarkably, an optimal eavesdropping attack against this protocol does
not require any coherent quantum operation.Comment: 5 pages, RevTe
Quantum Key Distribution Using Quantum Faraday Rotators
We propose a new quantum key distribution (QKD) protocol based on the fully
quantum mechanical states of the Faraday rotators. The protocol is
unconditionally secure against collective attacks for multi-photon source up to
two photons on a noisy environment. It is also robust against impersonation
attacks. The protocol may be implemented experimentally with the current
spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure
Formal Model Engineering for Embedded Systems Using Real-Time Maude
This paper motivates why Real-Time Maude should be well suited to provide a
formal semantics and formal analysis capabilities to modeling languages for
embedded systems. One can then use the code generation facilities of the tools
for the modeling languages to automatically synthesize Real-Time Maude
verification models from design models, enabling a formal model engineering
process that combines the convenience of modeling using an informal but
intuitive modeling language with formal verification. We give a brief overview
six fairly different modeling formalisms for which Real-Time Maude has provided
the formal semantics and (possibly) formal analysis. These models include
behavioral subsets of the avionics modeling standard AADL, Ptolemy II
discrete-event models, two EMF-based timed model transformation systems, and a
modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596
Development of Renovation Techniques for Medium and Large Diameter Water Transmission Pipes
Smart lining System was developed to restore and improve water quality, hydraulic, and structural function of water large transmission pipes through the construction of the high quality lining in the study. Smart lining System consists of smart cleaning, smart spray-on lining, and smart CIPP2+. Smart cleaning is the pre-process of lining process, and could ensure SSPC SP-10 and surface roughness 50 μm(Rz) as the quality of surface preparation for the lining by removing effectively deposited slime, residual lining, tuberculation, graphitization of pipe wall with the high pressure water jet, mechanical scraper, and air spin-head blasting equipment step by step
- …