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We identify those properties of a quantum channel that are relevant for cryptography. We focus on general
key distribution protocols that use prepare and measure schemes and the existing classical reconciliation
techniques, as these are the protocols feasible with current technology. Given a channel, we derive an easily
computable necessary condition of security for such protocols. In spite of its simplicity, this condition is shown
to be tight for the Bennett-Brassard 1984 and six-state protocols. We show that the condition becomes also
sufficient in the event of a so-called collective attack.
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I. INTRODUCTION

Cryptography, the art of sending private information, has
become inherent to our way of life. Concepts such as secure
protocols, or secret key distribution are gradually becoming
part of everyday language, as we gain awareness of an in-
creasing number of transactions being encrypted to ensure
confidentiality. Quantum cryptography �1�, i.e., quantum key
distribution �QKD� followed by one-time pad, enables two
honest parties, Alice and Bob, to exchange private informa-
tion by means of provable-secure protocols. The security is
guaranteed by quantum-mechanical laws.

All known QKD protocols can be decomposed into the
following three steps: First, Alice and Bob perform a tomog-
raphic analysis to obtain information about the quantum
channel they share. This step is crucial because from the
gathered information �e.g., from the error rate of the channel�
the honest parties should conclude whether a given QKD
protocol �e.g., Bennett-Brassard 1984 �BB84� �2� or six-state
�3�� is viable or secure. Second, if the first step is successful,
Alice and Bob use the QKD protocol to establish some cor-
relations. Third, these correlations are transformed into a per-
fect secret key by means of distillation techniques, either
classical or quantum. Concerning the first step, for each
QKD protocol there is a specific set of relevant channel pa-
rameters, e.g., the critical quantum bit error rate �QBER�,
beyond which key distillation is impossible.

In this work, we identify and quantify the cryptographic
properties of quantum channels per se, independently of any
particular QKD protocol. This is meaningful by itself, but it
has also a sharp practical edge, since in the real world the
channel connecting Alice and Bob is fixed. Knowing its se-
crecy properties would enable them to choose the best suited
protocol. Along this line, it is well known that any entangle-
ment breaking channel, i.e., a channel that is useless for dis-
tributing entangled states, does not allow secure QKD �4�. It
has also been shown in �5� that the mere presence of en-
tanglement already guarantees some secrecy. Leaving these
aside, little more is known about which channel properties
are necessary and/or sufficient for secure QKD. Here we take
a significant step in this direction.

The task is complex because there exists an infinite vari-
ety of QKD protocols. Here, we restrict our considerations to
what we call realistic protocols in which �a� the parameter
estimation and correlation distribution are made by prepare
and measure techniques, i.e., Alice prepares states from a set
of bases and Bob applies measurements chosen from another
set of bases, and �b� standard reconciliation �key distillation�
techniques, are employed. These techniques consist of two-
way advantage distillation �6� followed by one-way error
correction and privacy amplification. Note that most of the
existing QKD protocols, such as BB84, six-state or Ekert’s
�7� fit into this category �see �8��. Likewise, most of the
general security proofs, such as Shor-Preskill �9�, apply to
�b�. Moreover, the word realistic suits these protocols well,
as they are experimentally feasible; they do not require the
use of entangled particles or quantum memories.

The article is structured as follows: first, we derive a
simple, easily computable, necessary condition for the exis-
tence of a realistic and secure QKD protocol. If the channel
connecting Alice and Bob does not meet this condition, there
exists no prepare and measure protocol by which they can
establish a secret key with the current distillation techniques
�b�. This follows from the analysis of a specific attack, where
the eavesdropper, Eve, interacts individually and in the same
way with each of the states sent by Alice, but can arbitrarily
delay the measurement on her own state. These types of
attacks are often called collective �10�. The attack studied
here is similar to that in Ref. �11�. Then, we apply our gen-
eral result to the BB84 and six-state protocols, deriving the
critical QBER. The obtained values turn out to be tight for
techniques �b�, since they coincide with those derived by
Chau in his general security proof �12�. Finally, we prove
that our necessary security condition becomes also sufficient
when Eve performs arbitrary collective attacks.

II. SECURITY CONDITION

To state precisely and prove our security condition, let us
dive into the guts of a realistic QKD protocol. It proves
convenient to present the problem in the completely equiva-
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lent entanglement-based formulation, where Alice’s state
preparations are replaced by measurements �8�. For the sake
of simplicity, and also because of its practical relevance, we
restrict our present analysis to a qubit Pauli channel, but our
techniques also apply to other channels of arbitrary dimen-
sion �13�. In a Pauli channel, the qubit either remains un-
changed or is affected by a �x, �y, or �z rotation, with dif-
ferent probabilities. Therefore, we can assume that the Alice
and Bob channel is characterized by an effective Bell diag-
onal state

�AB = �1��+� + �2��−� + �3��+� + �4��−� , �1�

with �i�0 and �i�i=1. Throughout this paper square brack-
ets denote one-dimensional projectors �not necessarily nor-
malized�; e.g., ���= ������. We also use the standard conven-
tion: ��±�= ��00�± �11�� /	2, ��±�= ��01�± �10�� /	2.

In step one, Alice and Bob estimate �i by means of chan-
nel tomography. It is important to stress here that, although
Alice and Bob can effectively describe their data by means
of a state �1�, they cannot assume to share N independent
realizations of this state �channel� because Eve may have
introduced correlations among the copies. Without loss of
generality, one can impose that

�1 = max
i

�i, �2 = min
i

�i, �2�

since any permutation of the coefficients �i in �1� can be
achieved combining the following local unitaries:

T���+� ↔ ��−�� = 2−1�1 − i�z� � �1 − i�z� ,

T���−� ↔ ��+�� = 2−1��x + �z� � ��x + �z� ,

T���+� ↔ ��−�� = 2−1�1 + i�z� � �1 − i�z� . �3�

We can now state or main result: the inequality

��1 − �2�2 � �1 − �1 − �2���1 + �2� �4�

is a necessary security condition for realistic QKD on a
Pauli channel. The proof is given in the next lines, and fol-
lows from the analysis of a specific collective attack.

In step two, each honest party performs a local measure-
ment on each of a large number of copies of the state they
share, thus obtaining two lists of outcomes �bits�: 
Ai� �Alice�
and 
Bi� �Bob�. We need to identify a pair of measurement
bases whose secret correlations, implicit in each pair of out-
comes �Ai ,Bi�, can be distilled into a secret key in the third
step of the protocol.

Within the two-way scheme �b�, introduced by Maurer
�6�, each of the honest parties transforms blocks of
M bits into a single bit. By doing that, they map their initial
lists of bits into shorter, more secret and correlated ones. To
achieve this goal, Alice randomly chooses M bits from 
Ai�,
and Bob takes their M counterparts from 
Bi�. Next, Alice
generates a secret random bit sA, computes the M numbers
Xiª �Ai+sA� mod 2, and sends

X1,X2, . . . ,XM �5�

through the insecure but authenticated public channel. Bob
then adds bitwise �mod 2� this string to his list, B1 ,B2 , . . .BM.
If he obtains the same result sB for the M sums, i.e., if
�Bi+Xi�mod 2=sB for i=1,2 , . . .M, he keeps the bit sB and
communicates its acceptance. Otherwise, the two parties re-
ject the M bits. After this, Alice and Bob apply standard
one-way error-correction and privacy amplification tech-
niques to obtain the key.

A. Eve’s attack

Since Eve’s attack is collective, the three parties share N
independent copies of a state ��ABE�, where, see Eq. �1�,

��ABE� = 	�1��+��1� + 	�2��−��2�

+ 	�3��+��3� + 	�4��−��4� . �6�

That is, Eve has a large quantum system that is a purification
of Alice and Bob’s state, �AB=trE��ABE�.

Let us start analyzing the situation in which Alice and
Bob obtain their list of bits to be transformed into the secret
key by measuring in the computational basis. After the mea-
surement they are left with classical data, whereas Eve could
still hold a quantum system. The correlations they share are
described by the state �up to normalization�

�
x

�x�AB � ��x�E, �7�

where x=00,01,10,11, and

��00/11� = 	�1�1� ± 	�2�2� ,

��01/10� = 	�3�3� ± 	�4�4� . �8�

Notice that the above vectors are non-normalized. Next, Al-
ice and Bob apply advantage distillation. Eve has then her M
�four-dimensional� quantum systems as well as the informa-
tion that the honest parties have exchanged through the pub-
lic channel, i.e., the M-bit string �5�. If she performs the
unitary transformation

Ui = �1�E + �− 1�Xi�2�E + �3�E + �− 1�Xi�4�E �9�

to her ith system �i=1, . . . ,M�, the tripartite state becomes,
up to normalization,

�
x

�x�AB � ��x�E
�M . �10�

After the transformation �9�, the tripartite state �10� becomes
completely uncorrelated to �5�. The rest of the protocol is
also independent of �5�, so this information is no longer use-
ful. Hence, state �10� summarizes all the correlations among
Alice, Bob, and Eve before applying one-way reconciliation.
Bob’s error probability reads

	B =
��3 + �4�M

��1 + �2�M + ��3 + �4�M . �11�

Eve now performs the two-outcome measurement defined
by
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Feq = �1�E + �2�E, Fdif = �3�E + �4�E, �12�

on each one of her M systems, where the subscript “eq”
�“dif”� refers to the outcome, A being equal to �different
from� B. According to �10�, all M measurements give the
same outcome. Note that Eve knows in a deterministic way
whether sA and sB coincide, which implies that her informa-
tion on these variables is the same. If Eve obtains the out-
come corresponding to Feq, the tripartite state becomes �up to
normalization�

�00�AB � ��00�E
�M + �11�AB � ��11�E

�M . �13�

In order to learn sA, she must discriminate between the two
pure states �00 and �11. It was proved in �14� �see also �15��
that the minimum error probability she can achieve is

Perror =
1

2
−

1

2
	1 − c2M , �14�

where c is the overlap between the states. Applying this for-
mula to �13�, her error probability in guessing sA reads

	eq =
1

2
−

1

2
	1 − 
eq

2M . �15�

Similarly, if Eve obtains instead the outcome corresponding
to Fdif, the error probability 	dif is given by �15� with the
substitution 
eq→
dif, where


eq =
��1 − �2�
�1 + �2

, 
dif =
��3 − �4�
�3 + �4

. �16�

At this point, Eve’s information, denoted by E, consists of sE
�her guess for sA� as well as the outcome of the measurement
�12�. Our goal is now to prove that the obtained probability
distribution, P�sA ,sB ,E�, is nondistillable when �4� does not
hold. We will do that by showing that Eve can always map P
into a new probability distribution Q, which turns out to be
nondistillable when �4� is false. Thus the same has to be true
for P.

Without loss of generality, we assume that the flow of
communication after advantage distillation goes from Alice
to Bob. Eve proceeds as follows. From �2�, it can be seen
that 
dif�
eq, which implies that 	dif�	eq. When she ob-
tains the outcome corresponding to Fdif, she increases her
error until 	dif=	eq. She achieves this by changing the value
of sE with some probability. Then, she forgets the outcome of
measurement �12�. The obtained probability distribution,
Q�sA ,sB ,sE�, satisfies

Q�sB,sE�sA� = Q�sB�sA�Q�sE�sA� . �17�

Additionally we know that Q�sB �sA� and Q�sE �sA� are binary
symmetric channels with error probability 	B in �11� and 	eq
in �15�, respectively. It is proved in �6� that in such situation
the one-way key rate is K→=h�	eq�−h�	B�, which is nonposi-
tive if 	eq�	B. Let us finally prove that this inequality holds
for all values of M if condition �4� is not satisfied. Define
z=�1+�2. The range of interest is 1 /2�z�1, since no se-
cret key can be extracted from a separable state �4� and a
Bell diagonal state is entangled iff �1�1/2. After some al-
gebra, one can prove the inequality

	eq �
1

2
−

1

2
	1 − �1 − z

z
M

�
�1 − z�M

zM + �1 − z�M = 	B,

�18�

where M is any positive integer. The first inequality follows
from ��1−�2�2 /z2� �1−z� /z, which is the negation of Eq.
�4�.

Note that the previous analysis has been made assuming
that Alice and Bob measure in the z basis. However, the
same techniques could be applied to measurements in any
basis. We have performed an extensive numerical analysis
that shows that the computational bases are optimal against
the considered attack. Notice that in many cases, these mea-
surements do not maximize the correlations between Alice
and Bob, but they rather tend to optimize their secret corre-
lations. Therefore no secret key can be established through a
Pauli channel with any realistic protocol if condition �4� is
not met. This concludes the proof.

It is important to remember here that although our analy-
sis has been applied to the case of Pauli channels, it can be
adapted to other situations �13�. Our condition �4� is in gen-
eral stronger than the entanglement condition of �4�, as it
happens for Bell diagonal states. Indeed, our results suggest
that it may be impossible in general to reach the entangle-
ment limit by a prepare and measure protocol. Yet it is
weaker because stricto sensu it only refers a subclass of re-
alistic schemes. Nevertheless, these are the schemes feasible
using the existing technology and reconciliation techniques.

B. Application to known protocols

Although the analysis we have presented here aims at
characterizing quantum channels independently of QKD
schemes, it can also be applied to the study of specific cryp-
tographic protocols. In this case, no optimization over the
bases is required, since they are fixed by the details of the
protocol. Consider the BB84 and six-state protocols. A typi-
cal question in this context is to determine the critical QBER
of the channel. Now, Alice and Bob characterize their chan-
nel by a single parameter: the error rate. As above, we re-
strict our analysis to the known reconciliation techniques �b�.
In the case of the six-state protocol, Eve can prepare N in-
dependent copies of the two-qubit Werner state

�W = �1��+� +
1 − �1

3
���−� + ��+� + ��−�� , �19�

which has QBER=2�1−�1� /3. Condition �4� shows that a
secure key extraction is not possible if the error rate satisfies
QBER�0.2764; see Fig. 1.

For BB84, Eve can prepare the state

�BB84 = �1��+� +
1 − �1

2
���−� + ��+�� , �20�

for which QBER= �1−�1� /2. The critical QBER is now 0.2.
Remarkably enough, these figures coincide with those ob-
tained by Chau in �12�, where a general security proof for
these protocols was given. Indeed, Chau’s distillation proto-
col belongs to the family �b� considered here. The simple
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attack we have presented above is therefore tight and proves
that, unless so-far unknown two-way reconciliation tech-
niques are employed �16�, the critical QBER values we have
obtained cannot be raised.

By completing this work, we learn that similar results on
the tightness of Chau’s proof have independently been ob-
tained in �17�.

C. General collective attacks

Given the simplicity of our attack, its tightness for the
BB84 and six-state protocols is somehow surprising. Recall
that Eve is assumed to �i� apply the same interaction to the
states sent by Alice and �ii� measure right after advantage
distillation, while she could have delayed her measurement
until the end of the reconciliation protocol. Assumption �i�
may be not as strong as it might seem: the recent results of
�10� suggest that Eve may gain no advantage by introducing
correlations among the pairs of systems shared by Alice and
Bob �see also �18��. Assumption �ii� looks much more re-
strictive since after listening to the public communication
between Alice and Bob during the whole reconciliation, Eve
could in principle further optimize her measurement.

In view of this, it is relevant to see how condition �4� has
to be modified in the case of general collective attacks,
where assumption �ii� is dropped. In this case, Eve does not
measure her state after advantage distillation, so Alice, Bob,
and Eve share classical-classical-quantum correlations de-
scribed by the state �10�. It was proved in �19�, that the secret
key rate achievable with one-way communication �K→�
when Alice holds a classical system satisfies

K→ � I�A:B� − I�A:E� . �21�

In this equation I�X :Y�=H�X�+H�Y�−H�X ,Y�, where
H�X�=−tr��X log2 �X�, is the mutual information. After
some algebra, the following equality for the state �10� can be
obtained

I�A:B� − I�A:E� = 1 − h�	B� − �1 − 	B�h�1 − 
eq
M

2


− 	Bh�1 − 
dif
M

2
 , �22�

where h�x�=−x log2 x− �1−x�log2�1−x�. It can be checked
that if �4� is satisfied, there exists a sufficiently large M such
that the right-hand side of �21�, i.e., Eq. �22�, is positive.
Thus, our necessary condition �4� for key distillation be-
comes sufficient for general collective attacks. That is, Eve
gains no advantage by delaying her measurement until the
end of the reconciliation.

III. CONCLUSIONS

We have analyzed quantum channels in terms of their
secrecy properties. This approach is specially well suited to
practical QKD: it enables Alice and Bob to devise protocols
that optimally exploit the secret correlations present in the
quantum channel they share. We have derived a simple
and easily computable necessary condition for the existence
of a secure prepare and measure protocol with the current
distillation techniques. When applied to BB84 and the
six-states protocol, this condition turns out to be tight. More-
over, it becomes sufficient in the case of general collective
attacks.
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