8 research outputs found

    Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions

    Get PDF
    Additional file 6: Figure S4. CHD7 chromodomain histone peptide microarray. A) Representative array images of CHD7 chromodomain showing peptide binding indicated in red (right panel). The peptide tracer is shown in green (left panel). Positive antibody controls are outlined in white. B) Scatter plot of the relative binding of CHD7 chromodomain from two independent peptide arrays. All modified and unmodified H4 (1–23) peptides are shown in red. All other peptides are shown in black. C) Relative binding to the indicated histone peptides from one representative array. Data were normalized to the most intense binding and the average and standard deviation of triplicate spots is shown

    Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation

    Get PDF
    Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase

    A transcriptional coregulator, SPIN-DOC, attenuates the coactivator activity of Spindlin1

    No full text
    Spindlin1 (SPIN1) is a transcriptional coactivator with critical functions in embryonic development and emerging roles in cancer. SPIN1 harbors three Tudor domains, two of which engage the tail of histone H3 by reading the H3-Lys-4 trimethylation (H3K4me3) and H3-Arg-8 asymmetric dimethylation (H3R8me2a) marks. To gain mechanistic insight into how SPIN1 functions as a transcriptional coactivator, here we purified its interacting proteins. We identified an uncharacterized protein (C11orf84), which we renamed SPIN1 docking protein (SPIN-DOC), that directly binds SPIN1 and strongly disrupts its histone methylation reading ability, causing it to disassociate from chromatin. The Spindlin-family of coactivators has five related members (SPIN1, 2A, 2B, 3 and 4), and we found that all of them bind SPIN-DOC. It has previously been reported that SPIN1 regulates gene expression in the Wnt signaling pathway by directly interacting with transcription factor 4 (TCF4). We observed here that SPIN-DOC associates with TCF4 in a SPIN1 dependent manner and dampens SPIN1 coactivator activity in TOPflash reporter assays. Furthermore, knockdown and overexpression experiments indicated that SPIN-DOC represses the expression of a number of SPIN1-regulated genes, including those encoding ribosomal RNA and the cytokine IL1B. In conclusion, we have identified SPIN-DOC as a transcriptional repressor that binds SPIN1 and masks its ability to engage the H3K4me3 activation mar

    Developing Spindlin1 small-molecule inhibitors by using protein microarrays

    No full text
    The discovery of inhibitors of methyl- and acetyl-binding domains has provided evidence for the 'druggability' of epigenetic effector molecules. The small-molecule probe UNC1215 prevents methyl-dependent protein-protein interactions by engaging the aromatic cage of MBT domains and, with lower affinity, Tudor domains. Using a library of tagged UNC1215 analogs, we screened a protein-domain microarray of human methyllysine effector molecules to rapidly detect compounds with new binding profiles with either increased or decreased specificity. Using this approach, we identified a compound (EML405) that acquired a novel interaction with the Tudor-domain-containing protein Spindlin1 (SPIN1). Structural studies facilitated the rational synthesis of SPIN1 inhibitors with increased selectivity (EML631–633), which engage SPIN1 in cells, block its ability to 'read' H3K4me3 marks and inhibit its transcriptional-coactivator activity. Protein microarrays can thus be used as a platform to 'target-hop' and identify small molecules that bind and compete with domain-motif interactions

    Assessing kinetics and recruitment of DNA repair factors using high content screens

    No full text
    Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library (“ChromORFeome” library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair
    corecore