947 research outputs found

    Dielectric confinement in quantum dots of arbitrary shape within the local spin density approximation: Diluted regimes in elongated quantum dots

    Get PDF
    We propose a simplified and computationally feasible model accounting for the dielectric confinement in arbitrarily shaped many-electron quantum dots, within the local spin density approximation. The model yields quite a good agreement with full configuration interaction calculations including exact dielectric confinement. The model is used to study the influence of the dielectric confinement on the electronic charge distribution of elongated quantum dots in the low density regime

    Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

    Get PDF
    Energy consumption is a key concern in cloud computing. The paper reports on a cloud architecture to support energy efficiency at service construction, deployment, and operation. This is achieved through SaaS, PaaS and IaaS intra-layer self-adaptation in isolation. The self-adaptation mechanisms are discussed, as well as their implementation and evaluation. The experimental results show that the overall architecture is capable of adapting to meet the energy goals of applications on a per layer basis

    Functionalised Poly(Vinyl Alcohol)/Graphene Oxide as Polymer Composite Electrolyte Membranes

    Full text link
    [EN] Crosslinked poly(vinyl alcohol) (PVA) based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells (DEFC). The membranes were functionalised by means of the addition of graphene oxide (GO) and sulfonated graphene oxide (SGO) and crosslinked with sulfosuccinic acid (SSA). The chemical structure was corroborated and suitable thermal properties were found. Although the addition of GO and SGO slightly decreased the proton conductivity of the membranes, a significant reduction of the ethanol solution swelling and crossover was encountered, more relevant for those functionalised with SGO. In general, the composite membranes were stable under simulated service conditions. The addition of GO and SGO particles permitted to buffer the loss and almost retain similar proton conductivity than prior to immersion. These membranes are alternative polyelectrolytes, which overcome current concerns of actual commercial membranes such as the high cost or the crossover phenomenon.The authors would like to thank the support of the European Union through the European Regional Development Funds (ERDF). The Spanish Ministry of Economy, Industry and Competitiveness, is thanked for the research project POLYDECARBOCELL (ENE2017-86711-C3-1-R). The Spanish Ministry of Education, Culture and Sports is thanked for the FPU grant for O. Gil-Castell (FPU13/01916).Gil Castell, Ó.; Cerveró, R.; Teruel Juanes, R.; Badia, JD.; Ribes Greus, MD. (2019). Functionalised Poly(Vinyl Alcohol)/Graphene Oxide as Polymer Composite Electrolyte Membranes. Journal of Renewable Materials. 7(7):655-665. https://doi.org/10.32604/jrm.2019.04401S6556657

    Potential significance of photoexcited NO2 on global air quality with the NMMB/BSC chemical transport model

    Full text link
    Atmospheric chemists have recently focused on the relevance of the NO2* + H2O → OH + HONO reaction to local air quality. This chemistry has been considered not relevant for the troposphere from known reaction rates until nowadays. New experiments suggested a rate constant of 1.7 × 10−13 cm3 molecule−1 s−1, which is an order of magnitude faster than the previously estimated upper limit of 1.2 × 10−14 cm3 molecule−1 s−1, determined by Crowley and Carl (1997). Using the new global model, NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), simulations are presented that assess the potential significance of this chemistry on global air quality. Results show that if the NO2* chemistry is considered following the upper limit kinetics recommended by Crowley and Carl (1997), it produces an enhancement of ozone surface concentrations of 4–6 ppbv in rural areas and 6–15 ppbv in urban locations, reaching a maximum enhancement of 30 ppbv in eastern Asia. Moreover, NO2 enhancements are minor (xemissions are present; however, differences are small in most parts of the globe

    Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures

    Get PDF
    Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits

    Magnetic Pinning of Vortices in a Superconducting Film: The (anti)vortex-magnetic dipole interaction energy in the London approximation

    Full text link
    The interaction between a superconducting vortex or antivortex in a superconducting film and a magnetic dipole with in- or out-of-plane magnetization is investigated within the London approximation. The dependence of the interaction energy on the dipole-vortex distance and the film thickness is studied and analytical results are obtained in limiting cases. We show how the short range interaction with the magnetic dipole makes the co-existence of vortices and antivortices possible. Different configurations with vortices and antivortices are investigated.Comment: 12 pages, 12 figures. Submitted to Phys. Rev.

    Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang

    Get PDF
    This study provides further evidence for the impact of the aromas of plant essential oils on aspects of cognition and mood in healthy participants. One hundred and forty-four volunteers were randomly assigned to conditions of ylang-ylang aroma, peppermint aroma, or no aroma control. Cognitive performance was assessed using the Cognitive Drug Research computerized assessment battery, with mood scales completed before and after cognitive testing. The analysis of the data revealed significant differences between conditions on a number of the factors underpinning the tests that constitute the battery. Peppermint was found to enhance memory whereas ylang-ylang impaired it, and lengthened processing speed. In terms of subjective mood peppermint increased alertness and ylang-ylang decreased it, but significantly increased calmness. These results provide support for the contention that the aromas of essential oils can produce significant and idiosyncratic effects on both subjective and objective assessments of aspects of human behavior. They are discussed with reference to possible pharmacological and psychological modes of influence
    corecore