Metadata, citation and similar papers at core.ac.uk

Provided by WestminsterResearch

UNIVERSITY OF WESTMINSTER

"o

Yy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Lightweight Grid Platform: Design Methodology.

Rosa M. Badia®, Olav Beckmann?, Marian Bubak®, Denis Caromel?,
Vladimir Getov?, Ludovic Henrio®, Stavros Isaiadis?, Vladimir Lazarov?,
Maciek Malawski®, Sofia Panagiotidi?, Nikos Parlavantzas®, Jeyarajan
Thiyagalingam*

! nstitute for Parallel Processing, Acad. G. Bonchev

2 Department of Computing, Imperial College London

3 CNRS URA 1376, INRIA, 2004 Rt. des Lucioles, BP 93,F-06902 Sophia
Antipolis, Cedex, France.

* Harrow School of Computer Sciences, University of Westminster

® Departament d’Arquitectura de Computadors (DAC), Universitat Politecnica
de Catalunya

® Academic Computer Centre — CYFRONET, Krakow, Poland.

This is a reproduction of CoreGRID Technical Report Number TR-0020,
January 25, 2006 and is reprinted here with permission.

The report is available on the CoreGRID website, at:

http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0020.pdf

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.

Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

https://core.ac.uk/display/161115885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

European Research Network on Foundations, Software Infrastructures and Applications
for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Commission

Lightweight Grid Platform: Design Methodology

Rosa M. Badia, Olav Beckmant) Marian Bubak,
Denis Carome), Vladimir Getov, Ludovic Henrig,
Stavros Isaiadi§ Vladimir LazaroV, Maciek MalawsH,
Sofia Panagiotidi, Nikos Parlavantzas Jeyarajan Thiyagalingan

!Institute for Parallel Processing,

Acad. G. Bonchev Str., Bl. 25-A, Sofia, Zip 1113, Bulgaria.
’Department of Computing, Imperial College London, Lond@72AZ, U.K.
SCNRS URA 1376, INRIA, 2004 Rt. des Lucioles, BP 93,F-069pRi&antipolis,
Cedex, France.

*Harrow School of Computer Sciences, University of Westatins
Watford Road,Northwick Park,Harrow HA1 3TP, United Kingao
’Departament d’Arquitectura de Computadors (DAC),
Universitat Poliecnica de Catalunya, Campus Nord oiul D6,
C/ Jordi Girona, 1-3, E-08034, Barcelona, Spain.
6Academic Computer Centre — CYFRONET, Nawojki 11,30-95&dwaPoland.

. CoreGRID Technical Report

(oreGRMB— Number TR-0020
g —— January 25, 2006

Institute on Grid Systems, Tools and Environments

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

Lightweight Grid Platform: Design Methodology

Rosa M. Badia, Olav Beckmanf, Marian Bubak,
Denis Caromél, Vladimir GetoV, Ludovic Henrid,
Stavros Isaiadis Vladimir Lazarov, Maciek Malawski,
Sofia Panagiotidj Nikos ParlavantzdsJeyarajan Thiyagalingam

!Institute for Parallel Processing,

Acad. G. Bonchev Str., Bl. 25-A, Sofia, Zip 1113, Bulgaria.
2Department of Computing, Imperial College London, Londd7S2AZ, U K.
3CNRS URA 1376, INRIA, 2004 Rt. des Lucioles, BP 93,F-0690pI8a Antipolis,
Cedex, France.

“Harrow School of Computer Sciences, University of Westheins
Watford Road,Northwick Park,Harrow HA1 3TP, United Kingdo
*Departament d’Arquitectura de Computadors (DAC),
Universitat Politecnica de Catalunya, Campus Nord - M&xty
C/ Jordi Girona, 1-3, E-08034, Barcelona, Spain.
6Academic Computer Centre — CYFRONET, Nawojki 11,30-950k&w@, Poland.

CoreGRID TR-0020
January 25, 2006

Abstract

Abstract
Design aspects of existing and contemporary Grid systems feemulated with the intention of util-

ising an infrastructure where the resources are plentifatk of support for adaptivity, reconfiguration
and re-deployment are some of the shortcomings of existiid) systems. Absence of capabilities for a
generic, light-weight platform with full support for compent technology in existing implementations
has motivated us to consider a viable design methodologg fight-weight Grid platform. In this paper
we outline the findings of our preliminary investigation.
Keywords Generic Grid, Light-Weight platform, components techiggio

1 Introduction

Grid technology has the potential to enable coordinatedrsdpand utilisation of resources in large-scale applarsi
However, the real benefits are greatly influenced and résstrizy the underlying infrastructure.

Existing, contemporary Grid platforms are feature-rickctsthat the requirements of end users are a subset of the
available features. This design philosophy introducesicimmable software and administrative overheads, even for
relatively simple demands. The absence of a truly gendgictweight Grid platform with full support for component
technology as well as adaptivity, reconfiguration and dyicataployment in current Grid systems has motivated us to
consider a viable design methodology for engineering suehaplatform.

This research work is carried out under the FP6 Network ofliece CoreGRID funded by the European Commission (Conitgl-2002-
004265).

In [27], Thiyagalingamet.al. set out the design principles for designing a lightweighidGrlatform. In this
paper, we extend their techniques to design a lightweigintegic Grid platform, by carefully analysing requirements
and enabling technologies along with special attentiorotomonent technology. The key to our design philosophy is
dynamic, on-demand pluggable component technology thradich we hope to add and remove features on demand.

The rest of this paper is organised as follows: In Section 2evew some existing component models. Section 3
justifies the requirements for a generic, lightweight Gridtform while Section 4 evaluates existing and enabling
technologies. Section 5 includes some use-case scenaribstrate the needs and requirements of the platform and
Section 6 concludes the paper with directions for furthseagch.

2 Component Technologies
At least the following three different component modelstuafice our design:

e Common Component Architecture (CCA) [10]
e Fractal Component Model [6]

e Enterprise Grid Alliance Reference Model [11]

In the Common Component Architecture (CCA) [10], compogémteract using ports, which are interfaces point-
ing to method invocations. Components in this model defimevidler-ports” to provide interfaces and “uses-ports”
to make use of non-local interfaces. The enclosing framkeworvides support services such as connection pooling,
reference allocation, etc. Dynamic construction and dettn of component instances is also supported along with
local and non-local binding. An interface description laage (known as Scientific Interface Description Language,
SIDL [26]) may be used to specify the interfaces and assediabnstraints which are then later compiled using a
dedicated compiler (SIDL Compiler) to generate source dgade chosen programming language. These features
provide seamless runtime interoperability between corapts 1 However, CCA does not strictly specify component
composition and control mechanisms.

The Fractal Component Model [6] proposes a typed componedeiin which a component is formed from a
controller and a content, and Fractal components may bedestursively inside the content part. The control part
provides a mechanism to control the behaviour of the corgiginér directly or by intercepting interactions between
Fractal components. The recursive nesting, sharing anatdé@atures support multiple configurations. Components
have well-defined access points knownrggrfaces which could either be client- or server-interfaces. Congris
interact through interfaces usimperations which are either one-way or two-way operations. The oparaype
determines the flow of operation requests and the flow of tgsué. one-way operations correspond to operation
requests only, whereas two-way operations corresponda@tipns with results being returned. As the controllet par
may be used to manipulate the behaviour of the content pertydrious composition operations can be formulated
on-demand. This feature, combined with sophisticatedibgqtechnology, may be used to re-configure components
and compositions dynamically.

The Enterprise Grid Alliance provides a reference mode] [4ith the intention of adopting Grid computing
related technologies within the context of enterprise aitess. The model, which is aligned with industry-strength
requirements, classifies the components, which may indhaddware resources, into layers. Components can be
associated with component-specific attributes to spe@feddencies, constraints, service-level agreementicser
level objectives and configuration information. One of tleg keatures that the reference model suggests is the life-
cycle management of components which could be governed liyiggoand other management aspects. Unlike other
two models, EGA is not a strong component model; yet, we haekided it here for its support for component
life-cycle management.

3 Requirements for a Generic Lightweight Platform

The complete set of features and requirements for any pieseftware evolves over time. However, a reasonable
set of requirements and features can be derived by analgisngequirements of end-users and similar frameworks.
Further, in realizing the design of the platform, we woulketlto utilise techniques available in existing work. Fosthi
purpose, we have analysed the following relevant framesvork

CoreGRID TR-0020 2

MOCCA/H20 [19]

ProActive (and other realizations of Fractal) [12]
CORBA [22]

ICENI [18]

Ibis [25]

GRID superscalar [3]

Enterprise Grid Alliance Reference Model [11]

Although some of these are not platform-level frameworkgytdo support some key technologies which are
necessary either as part of a Grid platform or as an enaldtigiblogy for designing a Grid platform. For instance,
ProActive supports very strong component-oriented appiba development; Ibis provides an optimisation frame-
work for communication-bound programs; Grid Superscalailifates improving the performance of a certain class
of applications by identifying specific data-flow patterfdQCCA, a partially implemented lightweight platform,
supports modular development. We discuss these enabtihgdtogies in Section 4.

Following the analysis of these key technologies, we prepbe following key requirements for a generic,
lightweight platform.

1.

Lightweight and generic

Grid computing has the potential to address grand chalkrsggrting with vehicle design to analysing financial
trends. However, currently, its benefits are confined to apedimg environment where the resources are plen-
tiful. Traditional design methodologies for Grid systembere systems are expected to be feature-rich, do not
produce generic Grid platforms.

Primarily, a Generic Grid Platform should be lightweightlwminimal but essential features such that it could
be scaled by adding new features as required. Such a propeuty permit us to enable Grid technologies
being utilised from consumer devices to enterprise datdres.

. Static and dynamic metadata

In complex distributed computing environments, metad#gpan important role. Especially in component-
based environments, it is often imperative to be able taektnetadata information from components in order
to ensure efficient composition of components, satisfy ijuaf service requirements and provide the build-
ing blocks for the dynamic properties of the platform (refaigurability, adaptability). For optimal application
composition it is necessary to hold information about easlil@le component. Static metadata can provide in-
formation pertaining to implementation, version, comipiéity issues, performance characteristics, restrictjon
accounting details and alike.

At the other end we have dynamic metadata information: médion pertaining to dynamic properties of com-
ponents and resources. Keeping track of dynamic propeftiesmponents and resources is vital for satisfying
quality of service and other service-level agreements.thiear dynamic metadata can be used for efficient
component optimisation, checkpointing, recovery frontufais, logging, accounting and reporting. Dynamic
metadata can go beyond isolated components, and cover piieagion composition as a whole in order to
support cross-component optimisation, application stgerun-time dynamic workload balancing etc.

. Dynamic deployment of components

There are many reasons why the platform should deploy coemgedynamically, including reaction to changes
and demands in the system. This is possible, only if the qratfis capable of introducing, replacing and
removing components dynamically with minimal disruption.

. Reconfiguration and adaptivity

The platform should realistically model and synthesis@ueses in order to install or un-install dynamically
additional features and services. Further, appropriateti@an to environmental conditions with the right ex-
ploitation of modelling, synthesis and deployment of segsiis also a necessary feature of the platform to
guarantee resilience to failures.

CoreGRID TR-0020 3

4

10.

This is essentially a form of reconfiguration or the abilifyttee platform to self-organise itself to agree with the
QoS issues, service-level agreements and service-lejagtoles. In supporting reconfiguration and adaptivity,
the platform may utilise rules, embedded-knowledge anavkedge gathered across runs.

. Support for both client/server and P2P resource sharing

In the traditional client/server model of resource sharimdproker module (or a querying module) performs
match-making between user requirements and resourcesntrast, in a decentralised system, providers and
consumers interact with more freedom without the intereenbf brokering modules, i.e. in a peer-to-peer
fashion. While a regulated centralised access mechaniamagiees enforcement of fair policy, a peer-to-peer
mechanism reduces associated overheads and improvessedpoe and performance. Further, in an ad-hoc
and mobile environment, registration activities may idtroe unnecessary delays. In contrast, a peer-to-peer
scheme does not require any such mechanism at the centeal Mie hypothesise that the platform should
support both of these schemes to enable context-basedrstgpesource sharing.

. On-demand, provider-centric service provision

The platform should support on-demand creation of serwidesn needed by clients. However, making service
provision more provider-centric ensures that the platfisrfreed from complex resource modelling and binding
issues. In a provider-centric model, the provider enaldegice provision. This essentially frees the platform
from performing unnecessary negotiations and coordinasisks.

. Minimal but sufficient security model

Maximised security, performance and simplicity of the foah are contradictory goals in design. Though
the minimal security model may offer acceptable perforneaanod may result in a lightweight platform, it can
in practice be challenging to quantify the right level of frimhal security”. Security requirements are often
context-based. For example, in a trusted or isolated n&tvamcurity measures can be bypassed in favour
of performance and simplicity. In a collaborative netwaskch as the Internet, it is inevitable that security
measures are tightened with minimal concern over perfocma@sues. We intend to include support for single
sign-on and delegation of credentials and mechanismsreatjini resource sharing environments which may
span multiple administrative domains and pluggable sugpoany additional security features. This approach
guarantees that the security model may evolve with context.

. Binding and coordination

Resources should be configurable by pluggability and regordbility of the platform, thus making possible the
scenarios available in H20 [16]. The roles of resource pleryicomponent deployer and client should be sep-
arated, but they may possibly overlap. The platform shootcdhmandate a specific mechanism for coordination
and matching of users and providers. This should be left lioggable discovery and brokering components.
The presence of a centralised coordination point enabfesti@®e binding of resources, providers and users.
However, such a centralised point can be a bottleneck inselgdederated environment with no control. This
would urge us to consider technologies for binding of resesiy providers and users through a decentralised
scheme with limited negotiation for provision, utilisatiand coordination of entities.

. Additional services

The platform should be able to incorporate additional ewvias requested by the environment. For example, a
network environment may opt to bill the users during pealet{orility accounting), provide additional smarter
discovery protocols at a small charge, automated backuwjcssretc.

Distributed management

Distributed but coordinated management functionalithesheart of the platform operation. These functionali-
ties may including life-cycle management of componentskflows, meta-data and utilisation of meta-data.

Evaluation of Existing Technologies

MOCCA/H20 : MOCCA [19] is a lightweight distributed component platforan implementation of the CCA
framework built on top of the Java-based H20 resource shatatform. MOCCA uses H20 [16] as a mecha-
nism for creation of components on remote sites and uses RWMAMor communication between components.

CoreGRID TR-0020 4

MOCCA takes advantage of the separation of the roles of resoprovider and service deployer in H20.

Components in MOCCA can be dynamically created on remotehinas. H20 kernels, where components
are deployed, use the Java security sandbox model, givieguaes environment for running components. The
extensible RMIX communication library allows using varsoprotocols for communication, such as JRMP or
SOAP, and also pluggable transport layers, including TGR, &nd JXTA [15] sockets for P2P environment.

e ICENI and ICENI II : ICENI[20, 13]is a Grid middleware infrastructure whiclcindes methods for both re-
source management and efficiently deploying application§od resources. The design philosophy of ICENI
is based on high-level, component-based software cottisn,icombined with declarative metadata that is used
by the middleware to achieve effective execution. ICENIZL] is a natural semantic evolution of ICENI,
maintaining the architectural design of the original ICENUIt overcoming weaknesses in the current imple-
mentation, such as the implementation of ICENI on top of Wetyf8es, decomposition of ICENI architecture
into a number of separated composable toolkits and reducfithe footprint of ICENI on resources within the
Grid.

e ALICE: ALICE [1] is a lightweight Grid middleware which facilitas aggregation and virtualization of re-
sources within an intranet and leveraging sparse resotincesgh the Internet. The modularised, object-
oriented nature of its implementation supports possibteresions and varying the levels of QoS, monitoring
and security. The ALICE architecture consists of multiplgdrs with the lowest, core layer providing resource
discovery and system management using Java technolodieseEond level layer, relying on the lowest layer,
supports application development and deployment. The Elii@htime system consists of consumer, resource
broker and a producer and task-farm manager which deplaysxacutes applications.

e IBIS: Ibis [25] is a Java-based Grid programming environmembjraj to provide portability, efficiency and
flexibility. Ibis offers such programming models as traoiithl RMI (Remote Method Invocation), GMI for
group communication, RepMI for replicated objects andrSdi solving problems using divide-and-conquer
method. These components of Ibis are placed on top of thePtigbility Layer (IPL), which allows various
implementations of underlying modules, such as commuitcand serialisation, monitoring, topology dis-
covery, resource management, and information servicésallBws runtime negotiation of optimal protocols,
serialisation methods, and underlying grid services, ddjpg on the hardware and software configuration and
requirements from higher layers.

Ibis focuses on various performance optimisations, to@wae the known drawbacks of Java. The optimisa-
tions include the serialisation of objects in RMI, avoidofginnecessary copying of data during communication,
and possibility of using native communication librarieg.dor Myrinet.

e CORBA: Common Object Request Broker Architecture (CORBA [22B imiddleware specification for large-
scale distributed applications. An application in the C@RBchitecture is composed of objects and the de-
scription of operations and functionalities of each andywebject is utilised for providing support at the archi-
tecture level. Interface descriptions are used for comuoatimg objects, transporting data and marshaling/un-
marshaling methods calls. The IDL (Interface Descripti@anfjuage) definitions are language-independent,
through mappings from a chosen programming language. Theganes are compiled and mapped to the un-
derlying programming language with a compiler providedliy ©RB (Object Request Broker) system, which
is the key to CORBA's interoperability. Method invocatiams objects are handled transparently by the ORB,
providing maximum abstraction. To capture dynamically anavide information regarding new objects, the
ORB model provides a Dynamic Invocation Interface (DIl) ,igkhunifies the operations to all instances of an
object. With DII, clients can construct the invocations dgmcally by retrieving the object IDL interface from
the registry.

e GRID Superscalar. GRID Superscalar [3] is an Grid-unaware application frenméx focused on scientific
applications. The definition of Grid-unaware applicatioamghe framework of GRID Superscalar are those
applications where the Grid (resources, middleware) issparent at the user level, although the application
will be run on a computational Grid. The key for GRID Supelacapplications is the identification of coarse
grain functions or subroutines (in terms of CPU consumptiarthe application. Once these functions or
subroutines (called tasks in the GRID Superscalar framiéware identified, the GRID Superscalar system is
able to detect at runtime data dependencies and the intoameeurrency between differentinstances of the tasks.
Therefore, a data-dependence task graph is dynamically &nd tasks are executed on different resources on

CoreGRID TR-0020 5

the Grid. Whenever possible (because data-dependendaleavanable resources allow) different tasks are
executed concurrently, increasing application perforrean

The input codes for GRID Superscalar are sequential agigiicawritten in an imperative language, where a
small number of GRID Superscalar API calls has been addedth&n input that the user should provide is

the IDL file, where the coarse grain functions/subroutirmesidentified by the user specifying their interface.

A code generation tool uses the IDL file to generate all theaieing files so that the application can be run

on a Grid environment. This is combined with the deploymemitiee, which is graphical interface that enables
to check the grid configuration and to automatically depheyapplication in the grid. Optionally the user can

also specify determined requirements of the tasks (respsaftware, hardware) in a constraint specification
interface. These requirements are matched at runtime b@Ri® Superscalar library and the best resource
that meets the requirements is selected to execute each task

e ProActive: ProActive is a 100% Java library for parallel and distrédmitomputing. ProActive is based on a
meta-object protocol (MOP): objects and method calls afeede]9]. ProActive allows to build Grid applica-
tions by composing them from existing components, for ims¢eby programming (using scripting or compiled
languages), and also to build the individual components.

As ProActive is built on top of the Java standard APIls, maildya RMI and the Reflection APlIs, it does not

require any modification to the standard Java executiorr@mvient, nor does it make use of a special compiler,
pre-processor or modified virtual machine. Additionallye tJava platform provides dynamic code loading
facilities, very useful for tackling complex deploymenésarios.

A distributed or concurrent application built using Proifetis composed of a number of medium-grained enti-
ties calledactivities Each active object has one distinguished elemengtdtiee objectwhich is the only entry
point to the activity. Each activity is single threaded amdides in which order to serve the incoming method
calls. Method calls sent to active objects are asynchromdtinstransparenfuture objectsand synchronisa-
tion is handled by a mechanism knownwait-by-necessit{8]. There is a short rendezvous at the beginning
of each asynchronous remote call, which blocks the callél tive call has reached the context of the callee,
thus ensuring causal ordering of communications. ProAcaigo features mobility, security [2], and group
communication [4].

ProActive components provide a distributed implementatid-ractal components. More precisely, a ProActive
component follows the characteristics below:

It provides a set of server ports as defined in Fractal [7]9Jaterfaces)

It possibly defines a set of client ports (Java attributelsafdcomponent is primitive)

It can be of three different types :
1. primitive : defined with Java code implementing providedssr interfaces, and specifying the mech-
anism of client bindings.
2. composite : containing other components.

3. parallel ;: also a composite, but re-dispatching callss@xternal server interfaces towards its inner
components.

It communicates with other components through 1-to-1 ougrmommunications.

— A primitive component is formed from one (or several) Act@gject(s), executing on one (or several)
JVM(s)

— It provides a set of reflexive facilities (as defined in Frjcta

— Itimplements several controllers for defining the non-tiomal aspects (i.e., binding controller allows to
bind/unbind interfaces included in the components).

A ProActive component composition can be specified by a descr defined using the Fractal ADL (Archi-
tecture Description Language). Deployment of ProActiveiponents relies on the notion of virtual node,
capturing the deployment capacities and needs, and on XNlogment descriptors. ProActive components
also allow to encapsulate legacy code.

CoreGRID TR-0020 6

5 Use-Case Scenarios

In this section, we include three different use-case sien#u illustrate better and capture the practical requinets
from a user’s point of view.

5.1 Use-Case 1: GENIE: Grid ENabled Integrated Earth SystenModel

The GENIE (Grid ENabled Integrated Earth System Model) gob[14] is an application which demonstrates the
need for a scalable modular architecture. The project nsatiel behaviour of large-scale thermohaline circulation,
utilising various scientific modules corresponding to elifint environmental fragments. The case study would focus
on componentizing the currently available serial soluionexecution in a Grid platform. This task opens up a
series of challenges including efficient componentizatind composition, interface constraints, model-specifit an
resource-constrained simulations, real-time schedwingperations, distributed execution and collection oféar
volumes of data.

This use-case would illustrate and cover a wide spectrumuesiipns pertaining to execution/adopting legacy
applications to our generic, lightweight Grid platform athé capability of the platform in capturing and validating
workflow models in scientific applications.

5.2 Use-Case 2: Visualisation of Large Scientific Datasets

This use-case, Visualisation of Large Scientific Datasetgtures the requirements for the platform to manipulate in
teractively and visualise large volumes of data in a Gridremment. The large datasets are partitioned offline but the
operations for visualisation are determined at runtimegiaifront-end, such as the MayaVi tool [24]. Visualisatién o
a given dataset typically involves processing a “visuélisepipeline” of domain-specific data analysis and renugri
components. This happens before rendering and includeatapes such as feature extraction or data filtering com-
putations. Osmondit al.[23] describe the implementation of a “domain-specificiipteter” that allows visualisation
pipelines specified from MayaVi to be executed in a distébutnemory parallel environment.

The key challenge posed by this use-case is a mechanism wdmictake such an execution plan (effectively a list
of VTK operations to be performed) and execute it on Grid ueses. In particular, this means

e A multi-language environment
¢ A lightweight mechanism for executing a script of Pythonmpiens on a remote Grid resource

¢ A lightweight mechanism for accessing the underlying dztsaen remote resources (this could be done by file
transfer, or — better, the resource mapping should takeuext@d where the data is located)

e Ability to cache intermediate results on remote resourcHsis requirement can lead to significantly better
performance when visualisations are repeated, and relissme form of “remote state”.

5.3 Use-Case 3: Jem3D: High Performance Numerical Solver

This use case concerns the development and deploymentroplifprmance numerical solvers on the Grid. Specifi-
cally, we concentrate on the Jem3D application: a finite mautime domain solver for the 3D Maxwell’s equations
modelling the propagation of electromagnetic waves [5in3© was developed at INRIA, and it has evolved from a
Fortran/MPI parallel application to a grid-enabled, comgt-based application built on ProActive. Current imple-
mentation of the Jem3D relies on following components:rgtgeand visualisation agents, data collectors, procgssin
components (termed sub-domains) that correspond to a gecahdecomposition of the computational domain, and
a composite component that encapsulates the processimpoemts, as illustrated in Figure 1.

The Jem3D use case demonstrates several of the previoaslfied requirements. Dynamic component deploy-
ment is necessary for allowing users at separate workstatm participate at any time in monitoring and steering
the application. Reconfiguration and adaptivity are esasefor accommodating variations in the availability of un-
derlying resources. In one scenario, the application adapgperformance degradation by dynamically changing the
size of the computation. Alternatively, the applicatioagts by migrating an underperforming processing component
to a more powerful node or by decomposing further its contjprial domain to sub-domains and assigning them to
new, dynamically-deployed processing components. Amatbenario concerns the data collector component that is

CoreGRID TR-0020 7

£ FractalGUI for ProActive

File Edit Admin View

DIslelslols RRFCaE 5] @aaaD b

=

N Data Collector
@ = Domain

B SubDamain-1|
B SubDomain-2|%
B SubDomain-3 |2
B SubDorain-4| 4
B SubDomain-5| %
B SubDomain-g| %
§ SubDomain-7| 7
B SubDormain-8| 3
B SubDomain-8|%
B Steering and Yisu

Steering and VIsuwalisation GUL

pata Collector

ronmm—line Steering

H H
SubDomain-1 [SubDamadn -4 b SubDonain-7
———TH i
. H |—
H W H
{_Fm =
T H b—
-
H H “

| Grapn | Diatog

Component name: <EMPTV> component type: <EMPTY>
Interface name: <EMPTY> Interface type: <EMPTY>

Figure 1: Component Architecture in Jem3D

used to periodically receive computed solutions from psetey components. If the load imposed on the collector
machine becomes excessive, the application reconfiguweé id employ a hierarchical structure of collectors that
exhibits better scalability. Enabling all previous scémarequires dynamic metadata describing the deploymept pr
erties of components and the interconnections between {iagminterconnections between collectors and procgssin
components). Finally, support for group communicationagipularly useful for Jem3D because it greatly simplifies
the implementation and allows it to adapt to changing apfibc needs, such as the need for new solver algorithms.
Moreover, group communication greatly improves the efficieof the communications.

The above Jem3D requirements are supported by ProActi@las$. The platform enables dynamic component
deployment on arbitrary machines using an extensible sdéployment protocols. In terms of reconfiguration and
metadata, the platform supports maintaining and maniimgjdéhe interconnections between components, managing
their lifecycle, and migrating them between arbitrary miaek. Group communication is a key ProActive feature.
The adaptivity scenarios are currently unsupported anah thie subject of on-going work. Supporting adaptivity
is expected to involve the introduction of manager compts#rat build on the reconfiguration primitives already
provided by the platform, without requiring changes to gxgcomponents.

6 Conclusions

In this paper, we have outlined our initial findings in desigya generic, lightweight Grid platform. With a component
oriented methodology, we have proposed a set of requirenagk features that a generic, lightweight Grid platform

CoreGRID TR-0020 8

should support. We have paid special attention to ensunaga wider class of applications and infrastructures are
supported, including non-grid, legacy- and enterprisesshpplications. We intend to achieve the required sdi&yabi
by relying on dynamic, on-demand plugging of services andmmnents. We have also captured user-centric views
and requirements with the help of different use-cases.

Towards designing a platform, we would like to investigée following issues:

e Dynamic non-interruptive reconfiguration of services/paments
o Efficient life-cycle management of components
e Tools and supportive environments for using and porting@oid and legacy applications

¢ Realistic modelling and synthesis of Grid resources andpmorants for deriving information to be used for
providing adaptive, reconfigurable services.

References

[1] ALICE: A Scalable Runtime Infrastructure for High Perfomneg Grid Computingvolume 3222. Springer-
Verlag, 2004.

[2] I. Attali, D. Caromel, and A. Contes. Hierarchical ancclgative security for grid applications. kOth Inter-
national Conference On High Performance Computing, HIiP@ume 2913, pages 363—372. LNCS, 2003.

[3] Rosa M. Badia, JesUs Labarta, Raill Sirvent, Josepéve£ Joseacute, M. Cela, and Rogeli Grima. Program-
ming Grid applications with GRID superscaldournal of Grid Computingl(2):151-170, 2003.

[4] L. Baduel, F. Baude, and D. Caromel. Efficient, flexiblegddyped group communications in java.Joint ACM
Java Grande - ISCOPE 2002 Confereppages 28-36. ACM Press, 2002.

[5] Laurent Baduel, Francoise Baude, Denis Caromel, @arndelbé, Nicolas Gama, Said El Kasmi, and Stéphane
Lanteri. A parallel object-oriented application for 3d @l®magnetism. IHPDPS IEEE Computer Society,
2004.

[6] E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive &hmic software composition with sharing. In
Proceedings of the Seventh International Workshop on CammteOriented Programming (WCOP2002D02.

[7] Eric Bruneton, Thierry Coupaye, and Jean-Bernard &tef@ecursive and dynamic software composition with
sharing. InProceedings of the 7th ECOOP International Workshop on Gorapt-Oriented Programming
(WCOP’02) June 2002.

[8] D. Caromel. Towards a Method of Object-Oriented ConentProgramming.Communications of the ACM
36(9):90-102, September 1993.

[9] Denis Caromel, Fabrice Huet, and Julien Vayssiere. mMpse security-aware mop for java. Froceedings of
Reflection 2001, the Third International Conference on Néetal Architectures and Separation of Crosscutting
Concernsvolume 2192 of NCS pages 118-125, Kyoto, Japan, September 2001.

[10] CCA Forum Home Page. The Common Component Architedtaram, 2004. http://www.cca-forum.org.
[11] Enterprise Grid Alliance. Reference model. TechniReport Version 1.0, Enterprise Grid Alliance, 2005.

[12] Matthieu Morel Francoise Baude, Denis Caromel. Frostritiuted objects to hierarchical grid components. In
International Symposium on Distributed Objects and Agtians (DOA), Catania, Italyvolume 2888 0£ NCS
pages 1226 — 1242. Springer, 2003.

[13] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Fialtd J. Darlington. ICENI: Optimisation of Com-
ponent Applications within a Grid Environmerdournal of Parallel Computing28(12):1753-1772, 2002.

[14] GENIE. The Grid ENabled Integrated Earth system modejget. http://www.genie.ac.uk, 2005.

CoreGRID TR-0020 9

[15] Pawel Jurczyk, Maciej Golenia, Maciej Malawski, Davldrzyniec, Marian Bubak, and Vaidy S. Sunderam.
A system for distributed computing based on H20 and JXTAPioceedings of the Cracow Grid Workshop,
CGW'’04, December 13-15, 200#ages 257-268, Krakow, Poland, 2005.

[16] Dawid Kurzyniec, Tomasz Wrzosek, Dominik Drzewiecknd Vaidy Sunderam. Towards self-organizing dis-
tributed computing frameworks: The H20 approakhrallel Processing Letterd 3(2):273—-290, 2003.

[17] Dawid Kurzyniec, Tomasz Wrzosek, Vaidy Sunderam, afekéander Slomihski. RMIX: A multiprotocol RMI
framework for java. InProc. of the Intl. Parallel and Distributed Processing Symsjpm (IPDPS’03) pages
140-146, Nice, France, April 2003. IEEE Computer Society.

[18] William Lee, Anthony Mayer, and Steven Newhouse. ICEA Open Grid Service Architecture implemented
with Jini. In SC2002: From Terabytes to Insight. Proceedings of the IEE®MAC 2002 Conferenc¢éEEE
Computer Society Press, 2002.

[19] Maciej Malawski, Dawid Kurzyniec, and Vaidy SunderaMOCCA — towards a distributed CCA framework
for metacomputing. IfProceedings of the 10th International Workshop on Highdl&arallel Programming
Models and Supportive Environments (HIPS20@5D5.

[20] Anthony Mayer, Andrew Stephen McGough, Nathalie Funtoemd Jeremy Cohen, Murtaza Gulamalim, Laurie
Young, Ali Afzal, Steven Newhouse, and John Darlingt@omponent Models and Systems for Grid Applica-
tions chapter ICENI: An Intergrated Grid Middleware to Suppce®&ence, pages 109-124. Springer Verlag,
2004.

[21] Andrew Stephen McGough, William Lee, and John Darlamgt ICENI 11 Architecture. InUK e-Science All-
Hands MeetingSeptember 2005.

[22] Object Management Group, Inc. CORBA, 2005. http://weavba.org/.

[23] K. Osmond, O Beckmann, A.J. Field, and P.H.J. Kelly. Adin-specific interpreter for parallelizing a large
mixed-language visualisation application. To Appear indeedings of the 18th International Workshop on
Languages and Compilers for Parallel Computing.

[24] Prabhu Ramachandran. MayaVi: A free tool for CFD dasualization. Ind4th Annual CFD Symposium,
Aeronautical Society of IndjgAugust 2001. mayavi.sourceforge.net.

[25] Rob van Nieuwpoort and Jason Maassen and Gosia Wrkesamsl Rutger F. H. Hofman and Ceriel J. H. Jacobs
and Thilo Kielmann and Henri E. Bal. Ibis: a flexible and effiti java-based grid programming environment.
Concurrency - Practice and Experiende’(7-8):1079-1107, 2005.

[26] S.Kohn, G. Kumfert, J. Painter, and C.Ribbens. Divagdianguage Dependencies from a Scientific Software
Library. InProc. of the 10th SIAM Conf. on Parallel Processing for San, Portsmouth, USA, March 2001.
SIAM.

[27] Jeyarajan Thiyagalingam, Stavros Isaiadis, and WadGetov. Towards Building a Generic Grid Services
Platform: A Component Oriented Approach. In Vladimir Getmd Thilo Kielmann, editorsSomponent Models
and Systems for Grid Applicationsages 39—46. Springer, 2005.

CoreGRID TR-0020 10

