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Dielectric confinement in quantum dots of arbitrary shape within the local
spin density approximation: Diluted regimes in elongated quantum
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We propose a simplified and computationally feasible model accounting for the dielectric
confinement in arbitrarily shaped many-electron quantum dots, within the local spin density
approximation. The model yields quite a good agreement with full configuration interaction
calculations including exact dielectric confinement. The model is used to study the influence of the
dielectric confinement on the electronic charge distribution of elongated quantum dots in the low
density regime. © 2010 American Institute of Physics. �doi:10.1063/1.3487479�

I. INTRODUCTION

According to the electrodynamics of continuous media,
when electrons are confined in a quantum dot �QD� embed-
ded in a dielectrically mismatched matrix, surface
polarization-induced charges appear.1 The effect of the di-
electric mismatch is relevant, for it may lead to unexpected
behavior and challenges in the implementation of devices in
nanoelectronics,2 but also constitutes a tailoring tool of pur-
sued physical responses,3 having proved to be the driving
mechanism to explain experimental observations such as the
large variation in the optical gap of CdSe nanorods �NRs�
compared to the transport one,4 or the large magnitude of the
polarization anisotropy on linear5–7 and nonlinear8 optical
phenomena. The influence of the image charges on the elec-
tronic structure of homogeneous spherical QDs is described
in the pioneering papers by Brus.9 As mentioned, a proper
account for the effects stemming from the dielectric mis-
match between the QD and its surroundings, also called di-
electric confinement, has been proved of utmost relevance in
the agreement between theoretical predictions and experi-
mental observations.4,10 Two new terms arise in the Hamil-
tonian due to the dielectric confinement. On the one hand,
there is a single-particle contribution coming from the inter-
action of carriers with their own induced charges �self-
polarization potential�, and, on the other hand, there are two-
particle contributions coming from the interaction of a
carrier with the charge induced by the other one �polarization
of the Coulomb interaction�. The calculation of the self-
polarization potential is really involved, even in the case of
electrons confined by finite barriers in spherically symmetric
QDs.11,12 Very recently, a new numerical method revealed
good performance extending the calculations to dielectric
spheroids.13 The further extension to axially symmetric QDs,
such as lens, cylindrical or ring shaped QDs, has also been
published this year.14 The proposed computational scheme,
that can be easily extended to irregularly shaped QDs, relies
on the numerical calculation of the image charges induced by

the carriers at the dielectric interface.15,16 The calculation of
the polarization of the Coulomb interaction requires comput-
ing the image charges induced by a given electron density
distribution. All the same, the calculation of the self-
polarization potential is much heavier and involved, as it
requires a series of calculations of image charges produced
by an electron which is being located in each node of the
discretization grid, thus breaking the axial symmetry. Strate-
gies enabling an efficient achievement of convergence in the
calculation of the self-polarization potential of QDs embed-
ded in dielectric media are detailed in the abovementioned
paper.14 However, large-scale linear systems solvers using
secondary storage are needed for self-polarization potential
calculations of recently synthesized hybrid QDs composed of
a semiconductor trunk connected to one or two metal-like
tips, the whole structure being generally buried in an insulat-
ing medium.17,18

When the number of electrons in a QD is small, one can
proceed to account for dielectric mismatch and carry out the
most rigorous, and computationally very demanding, full
configuration interaction �FCI� calculations.19,20 However,
larger systems require less-demanding methods, such as the
density functional theory �DFT�.21 The practical limitations
of this method come from the not exactly known exchange-
correlation potential, but the general experience is that DFT
results are quite reliable,22 and they have contributed sub-
stantially to an understanding of QD electronic structure and
addition spectra.23,24 Some of us proposed a DFT scheme,
within the local spin density approximation �LSDA�, which
accounts for the dielectric confinement in many-electron
spherical QDs.25 In this approach, the self-polarization po-
tential is separately calculated and injected into the
Kohn–Sham26 Hamiltonian as a second confining potential,
while the Coulomb functional is accounted for by solving the
Poisson equation in dielectric media. Finally, both exchange
and correlation functionals were modified by means of
proper scaling factors. The extension of this approach to ar-
bitrarily shaped QDs, although desirable, reveals a difficult
implementation. In this paper, we propose a simplified and
feasible model to account for dielectric confinement ina�Electronic mail: josep.planelles@qfa.uji.es.
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LSDA for irregularly shaped QDs. For the sake of computing
simplicity, we will show results on axially symmetric sys-
tems.

II. THEORY

A. Framework methodology

The LSDA is a well-known approach, fully developed in
several papers and books, as, e.g., Ref. 21. A brief outline
may be found in, e.g., Sec. II of Ref. 25. Then, for the sake
of brevity, we will not sketch it now. We though summarize
next the induced charge calculation. It is based on the fact
that the Coulomb Potential ��r� generated by a charge dis-
tribution ��r� in an inhomogeneous dielectric medium, ob-
tained by solving the generalized Poisson equation,

����r� � ��r�� = − 4���r� , �1�

where ��r� is the position-dependent dielectric constant, can
also be expressed as a sum

��r� = �s�r� + �i�r� , �2�

with �s�r� and �i�r� fulfilling

�2�s�r� = − 4���r� , �3�

�2�i�r� = − 4�h�r� , �4�

i.e., the potential generated in a vacuum by the real charge
��r� plus the one generated by the induced charge h�r�.

Substituting Eqs. �2�–�4� in Eq. �1�, and after some alge-
bra, we have,

��r�h�r� = �1 − ��r����r� +
1

4�
� ��r� � ��s�r� + �i�r�� .

�5�

We obtain �i�r� by numerically discretizing Eq. �5�. Details
may be found in Ref. 14.

In order to account for the dielectric effects in LSDA we
propose the model we describe in Sec. II B, that basically
consists in supplementing the external potential of the Kohn–
Sham LSDA Hamiltonian by the Coulomb potential pro-
duced by the charge h�r� induced in the inhomogeneous di-
electric medium by the real charge distribution ��r�.

B. The model

The model is based on the following idea. Suppose that
a static charge distribution is embedded in a homogeneous
dielectric medium. If this medium is replaced by an inhomo-
geneous one, then, the charge density distribution rearranges
to reach equilibrium in this new medium. Since the influence
of the inhomogeneous medium may be replaced by a set of
image charges in a vacuum, we may imagine the fulfillment
of the final equilibrium as a set of iterative steps starting
from an unperturbed charge distribution Q�0�. As a first step,
this unperturbed real charge distribution induces a given vir-
tual charge distribution IC�0�. We then fix IC�0� and allow the
real charge, under the influence of IC�0�, to reach a new equi-
librium distribution Q�1�. The new real charge distribution

Q�1� yields a new induced charge distribution IC�1�. The pro-
cess is repeated until convergence �Q�i+1��Q�i��.

We implement this idea in the self-consistent Kohn–
Sham scheme. We start by solving the LSDA problem of a
many-electron QD embedded in a homogeneous medium.
Then, we obtain a set of occupied spin up and down orbitals
that define a total electron density distribution. We call it Q�0�

and proceed to the induced charge computation IC�0� as de-
scribed in Ref. 14. Then, we consider the potential produced
by the induced charge as an extra external potential to be
included in the Kohn–Sham Hamiltonian and proceed to it-
erate, thus reaching a new set of occupied spin up and down
orbitals that define a new total electron density distribution
Q�1�. In turn, Q�1� induces IC�1�, and the process is repeated
until convergence. Note that IC�n� includes both, self-
polarization of each electron and polarization of the Cou-
lomb interaction.

The proposal is computationally feasible and gives quite
a good agreement with FCI calculations including dielectric
confinement, as we show in Sec. III.

III. METHOD VALIDATION AND ILLUSTRATIVE
CALCULATIONS

Our first goal in this section is to validate the proposed
method for the study of the electronic density structure in
diluted regimes, where the Coulomb effects of the dielectric
mismatch are expected to be of greatest significance. We
assume a CdSe �dielectric constant �=9.2 and effective mass
m�=0.13� colloidal NR composed by a cylinder of radius
R=2 nm and length L attached to two hemispherical caps of
the same radius, surrounded by a medium with dielectric
constant �out. The confining potential presents a misalign-
ment of 4 eV between the rod and its surroundings, and, for
coherence with the dielectric model, displays a cosinelike
profile within a 0.5 nm width interfacial region. We carry out
LSDA together with FCI calculations for L=9 nm, assuming
in both cases an insulating surrounding medium ��out=2� and
a surrounding medium of the same dielectric constant as the
rod ��out=9.2�. The FCI program used is the same as in Ref.
27. As in such a paper, a basis set ensuring saturation along
the NR axis is employed. In the presence of dielectric mis-
match, the evaluation of the corresponding Coulomb matrix
elements goes through a similar induced charge computation
as the one we employ in the LSDA model.

Figure 1�a� shows the N-electron ground state densities
along the rod axis ��z� obtained for N=4 and 6 in the absence
of dielectric mismatch. In both cases the system presents a
charge density wave �CDW�, characterized by N /2 maxima
in the density profile. As observed, the LSDA results are in
qualitative agreement with the FCI ones, though FCI densi-
ties seem to show a bit larger electron correlation, which is
observed by the appearance of deeper valleys and more sepa-
rated maxima.28

The agreement is more apparent when the dielectric po-
larization is taken into account �Fig. 1�b��. The CDW phase
obtained previously is preserved in both cases �N=4 and 6�,
the main difference being an increased concentration of the
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electron density in the rod ends as compared to �out=9.2.
This dielectric effect has already been reported for similar
N=2 electron NRs.20

Let us next use the LSDA method presented to reach
much more diluted regimes which are beyond the reasonable
possibilities of the FCI method.30 In the following, and in
order to enhance the dielectric mismatch effects to its maxi-
mum, we will assume a value of �out=1 to describe the in-
sulating medium.

We plot in Fig. 2 the electronic charge density ��z� and
the spin up and down densities ��z

↑ and �z
↓� corresponding to

a L=40 nm rod with different electron populations and for
�=9.2 and �out=1. In this regime of electron dilution, the
�out=9.2 system presents for N=4 a spin density wave
�SDW� phase �not shown�, with broken spin symmetry and N
peaks along �z. This density structure can be regarded as a
linear Wigner molecule. For N=8 the density phase is a
CDW, with N /2 peaks along �z and preserved spin symme-
try. Instead, for N=6 the electron density presents an incipi-
ent SDW, with broken spin symmetry but with a �z profile
still showing N /2 maxima. Regardless of N, the distribution
of the electron density is more pronounced near the rod caps
�see dashed lines in Fig. 2�b��, in contrast with the situation
held when harmonic potentials are used.34

The comparison of the above situation with that dis-
played in Figs. 2, �a1�–�a3�, for �out=1 let us to conclude that
the presence of an insulating environment does not alter in
any case the electron correlation phase. The main effect of
this environment is to push the electronic density toward the
ends of the rod �see Fig. 2�b��, where �z becomes signifi-
cantly enhanced.

It is known that the presence of insulating external me-
dia tends to increase the electron–electron interaction and
thus the electron correlation.9,20,35 This, together with the
large anisotropy of the spatial and dielectric confinements in
elongated QDs, leads us to expect substantial changes in the
correlation phase experienced by the electrons in large NRs.
However, we observe that the dielectric mismatch effect is
not noticeable beyond the abovementioned increase in the
electron density near the rod caps. Indeed, the normalized
spin polarization ���z

↑−�z
↓� /max��z�, see Figs. 2, �c1�–�c3��

for N=4 and 6 shows a SDW that presents a similar antifer-
romagnetic modulation with similar maxima values both in
the absence �dashed lines� and in the presence �solid lines� of
dielectric discontinuities, despite the redistribution of �z

↑ and
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populated with N=8, 6, and 4 electrons. �b� �z profiles for the studied cases assuming �out=1 �solid lines� and �out=9.2 �dashed lines�. ��c1�–�c3�� Normalized
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�z
↓ toward opposite ends of the rod. Although spin polariza-

tion is locally not zero, it yields a zero total spin, as it is an
odd function of z �see Figs. 2, �c2�–�c3��.

By means of probing several L values �not shown� we
have checked that the dilution of the electron density by
increasing the rod length has a much more relevant effect on
the stability of the ground state correlation phase than the
increase in the electron–electron interactions induced by the
external medium. Yet, in the vicinity of phase transitions this
last effect can invert the order of stability of the phases in-
volved. Although this effect is quite focalized, for the sake of
illustration we include in Fig. 3, a similar comparison than
that of Fig. 2 but for L=50 nm. We represent this time �z,
�z

↑, and �z
↓ for both �out=9.2 �Figs. 3, �a1�–�a3�� and �out=1

�Figs. 3, �b1�–�b3��. As we can observe, for N=8 the system
presents a CDW in the absence of dielectric mismatch, pre-
serving the spin symmetry and a null spin polarization
�dashed line in Fig. 3, �c1��, but turns into an incipient SDW
with breakdown of the spin symmetry for �out=1 �see Fig. 3,
�b1�, and solid line in Fig. 3, �c1��. As for N=4, the presence
of the insulating medium yields a transition from the SDW to
the fully polarized phase �see Figs. 3, �a3�–�c3��.36 However,
it must be pointed out that the LSDA energy differences
among the phases discussed in each case �N=4 and 8� is
lower than 1 meV.

IV. CONCLUDING REMARKS

In this paper, we propose a feasible model to account for
the dielectric confinement in LSDA for arbitrarily shaped
QDs. The model which has a good agreement with FCI cal-
culations �including exact dielectric confinement� is then
used to study the influence of the dielectric confinement on
the electronic charge distribution of elongated QDs in the

low density regime. Insulating dielectric media yield a redis-
tribution of the electron density toward the ends of few-
electron colloidal NRs. Even in diluted density regimes, the
onsets of the density phase transitions remain almost unal-
tered, and the spin polarization density wave of broken sym-
metry phases is not noticeably perturbed except in the vicin-
ity of phase transitions.

ACKNOWLEDGMENTS

Continuous support from MCINN Project Nos.
CTQ2008-03344 and FIS2008-00421, UJI-Bancaixa Project
No. P1-1A2009-03, and Generalitat de Catalunya Project
No. 2009SGR1289 are gratefully acknowledged.

1J. D. Jackson, Classical Electrodynamics �Wiley, New York, 1962�.
2R. Tsu, Microelectron. J. 34, 329 �2003�.
3A. Konar and D. Jena, J. Appl. Phys. 102, 123705 �2007�.
4D. Katz, T. Wizansky, O. Millo, E. Rothenberg, T. Mokari, and U. Banin,
Phys. Rev. Lett. 89, 086801 �2002�.

5J. Wang, M. Gudiksen, X. Duan, Y. Cui, and C. Lieber, Science 293, 1455
�2001�.

6A. Lan, J. Giblin, V. Protasenko, and M. Kuno, Appl. Phys. Lett. 92,
183110 �2008�.

7K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou,
Nano Lett. 7, 1908 �2007�.

8V. Barzda, R. Cisek, T. L. Spencer, U. Philipose, H. E. Ruda, and A. Shik,
Appl. Phys. Lett. 92, 113111 �2008�.

9L. E. Brus, J. Chem. Phys. 79, 5566 �1983�; 80, 4403 �1984�.
10A. Shabaev and A. L. Efros, Nano Lett. 4, 1821 �2004�; S. F. Wuister, C.

M. Donegá, and A. Meijerink, J. Chem. Phys. 121, 4310 �2004�; V. A.
Fonoberov, E. P. Pokatilov, and A. A. Balandin, Phys. Rev. B 66, 085310
�2002�.

11P. G. Bolcatto and C. R. Proetto, J. Phys.: Condens. Matter 13, 319 �2001�.
12J. L. Movilla and J. Planelles, Comput. Phys. Commun. 170, 144 �2005�.
13C. Xue and S. Deng, Comm. Comp. Phys. 8, 374 �2010�.
14J. L. Movilla, J. I. Climente, and J. Planelles, Comput. Phys. Commun.

181, 92 �2010�.
15D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Phys.

(a1)

1

sp
in

p
o
la

ri
za

ti
o
n

−20 −10 0 10 20 3020 30

N = 4

z axis (nm)
20 30

N = 8N = 8

(a3)

−1

N = 6

−30 −20 −10

N = 4

z axis (nm)
0 10

N = 6

−20 −10 0

0

−1

1

sp
in

p
o
la

ri
za

ti
o
n

N = 8

10

N = 6

0

N = 4

0

−1

z axis (nm)

sp
in

p
o
la

ri
za

ti
o
n

1

ε = 9.2out

ε = 1out

ε = 1out

ε = 1out

ε = 1out

ε = 9.2out

ε = 9.2out

ε = 9.2out
ρ

,
ρ

,
ρ

z
z

z
ρ

,
ρ

,
ρ

z
z

z
ρ

,
ρ

,
ρ

z
z

z
(c1)

(c2)

(c3)

(b2)

(b1)

(b3)

(a2)

FIG. 3. �Color online� ��a1�–�a3�� �z �solid�, �z
↑ �dotted�, and �z

↓ �dash dotted� densities for a L=50 nm CdSe rod immersed in a �out=9.2 dielectric medium
and populated with N=8, 6, and 4 electrons. ��b1�–�b3�� Same as above but for �out=1. ��c1�–�c3�� Normalized spin polarization ���z

↑−�z
↓� /max��z�� for the

studied cases assuming �out=1 �solid lines� and �out=9.2 �dashed lines�.

064311-4 Movilla, Pi, and Planelles J. Appl. Phys. 108, 064311 �2010�

Downloaded 06 Oct 2011 to 150.128.148.40. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/S0026-2692(03)00019-3
http://dx.doi.org/10.1063/1.2825615
http://dx.doi.org/10.1103/PhysRevLett.89.086801
http://dx.doi.org/10.1126/science.1062340
http://dx.doi.org/10.1063/1.2924767
http://dx.doi.org/10.1021/nl070541n
http://dx.doi.org/10.1063/1.2901023
http://dx.doi.org/10.1063/1.445676
http://dx.doi.org/10.1021/nl049216f
http://dx.doi.org/10.1063/1.1773154
http://dx.doi.org/10.1103/PhysRevB.66.085310
http://dx.doi.org/10.1088/0953-8984/13/2/309
http://dx.doi.org/10.1016/j.cpc.2005.03.109
http://dx.doi.org/10.1016/j.cpc.2009.09.005
http://dx.doi.org/10.1103/PhysRevE.69.046702


Rev. E 69, 046702 �2004�.
16H. Hoshi, M. Sakurai, Y. Inoue, and R. Chûjô, J. Chem. Phys. 87, 1107

�1987�.
17J. M. Badia, M. Castillo, J. I. Climente, M. Marqués, R. Mayo, J. L.

Movilla, J. Planelles, and E. S. Quintana-Ortí, in Proceedings of the 10th
International Conference on Computational and Mathematical Methods in
Science and Engineering, J. Vigo-Aguilar, Ed. �Almeria, Spain, 2010�, pp.
133–141.

18J. M. Badia, J. L. Movilla, J. I. Climente, M. Castillo, M. Marqués, R.
Mayo, E. S. Quintana-Ortí, and J. Planelles �unpublished�.

19J. L. Movilla, J. Planelles, and W. Jaskólski, Phys. Rev. B 73, 035305
�2006�; J. L. Movilla and J. Planelles, ibid. 74, 125322 �2006�; 75, 195336
�2007�.

20J. I. Climente, M. Royo, J. L. Movilla, and J. Planelles, Phys. Rev. B 79,
161301�R� �2009�.

21R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Mol-
ecules �Oxford University Press, Oxford, 1989�.

22J. Kainz, S. A. Mikhailov, A. Wensauer, and U. Rössler, Phys. Rev. B 65,
115305 �2002�.

23S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 �2002�.
24M. Pi, D. G. Austing, R. Mayol, K. Muraki, S. Sasaki, H. Tamura, and S.

Tarucha, in Trends in Quantum Dots Research, edited by P. A. Ling �Nova
Science, New York, 2005�; D. G. Austing, S. Sasaki, K. Muraki, Y.
Tokura, K. Ono, S. Tarucha, M. Barranco, A. Emperador, M. Pi, and F.
Garcias, in Nano-Physics & Bio-Electronics: A New Odyssey, edited by T.
Chakraborty, F. M. Peeters, and U. Sivan �Elsevier, New York, 2002�.

25M. Pi, M. Royo, and J. Planelles, J. Appl. Phys. 100, 073712 �2006�; M.
Royo, J. Planelles, and M. Pi, Phys. Rev. B 75, 033302 �2007�.

26W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
27J. Planelles, M. Royo, A. Ballester, and M. Pi, Phys. Rev. B 80, 045324

�2009�.
28It is known that LSDA generally overestimates exchange and correlation

in extremely diluted systems �see, e.g., Ref. 29�. Then, the bit larger com-
pression of the LSDA function may be related to this overestimation.

29F. Pederiva, A. Emperador, and E. Lipparini, Phys. Rev. B 66, 165314
�2002�.

30For an assessment of the dilute regime and Wigner molecules in one-
dimensional and quasi-one-dimensional systems, see e.g. Refs. 27 and
31–33.

31W. Häusler and B. Kramer, Phys. Rev. B 47, 16353 �1993�.
32E. Räsänen, H. Saarikoski, V. N. Stavrou, A. Harju, M. J. Puska, and R.

M. Nieminen, Phys. Rev. B 67, 235307 �2003�.
33B. Szafran, F. M. Peeters, S. Bednarek, T. Chwiej, and J. Adamowski,

Phys. Rev. B 70, 035401 �2004�.
34S. M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B 59, 1613

�1999�.
35A. Franceschetti, A. Williamson, and A. Zunger, J. Phys. Chem. B 104,

3398 �2000�; A. Orlandi, M. Rontani, G. Goldoni, F. Manghi, and E.
Molinari, Phys. Rev. B 63, 045310 �2001�.

36The real existence of the fully polarized phase should be taken with cau-
tion, in the sense that LSDA generally overestimates exchange and corre-
lation in extremely diluted systems �see, e.g., Ref. 29�.

064311-5 Movilla, Pi, and Planelles J. Appl. Phys. 108, 064311 �2010�

Downloaded 06 Oct 2011 to 150.128.148.40. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevE.69.046702
http://dx.doi.org/10.1063/1.453343
http://dx.doi.org/10.1103/PhysRevB.73.035305
http://dx.doi.org/10.1103/PhysRevB.74.125322
http://dx.doi.org/10.1103/PhysRevB.79.161301
http://dx.doi.org/10.1103/PhysRevB.65.115305
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1063/1.2356791
http://dx.doi.org/10.1103/PhysRevB.75.033302
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.80.045324
http://dx.doi.org/10.1103/PhysRevB.66.165314
http://dx.doi.org/10.1103/PhysRevB.47.16353
http://dx.doi.org/10.1103/PhysRevB.67.235307
http://dx.doi.org/10.1103/PhysRevB.70.035401
http://dx.doi.org/10.1103/PhysRevB.59.1613
http://dx.doi.org/10.1021/jp0000026
http://dx.doi.org/10.1103/PhysRevB.63.045310

