280 research outputs found

    Engineered nanotherapeutics for pulmonary aerosol delivery

    Get PDF
    Despite centuries of use and widespread application, aerosol delivery of therapeutics remains limited to a small subset of diseases and active pharmaceutical ingredients, mainly restricted to small molecule delivery for asthma management. Respiratory diseases which would benefit from direct and localized treatment span a much larger landscape; chronic obstructive pulmonary disease (COPD), lower respiratory infections, and lung cancers alone globally contribute 7.8 million annual deaths, with a reported 117 million pulmonary cases (~37% of population, 2012) and over $88 billion in health care costs in the US[1, 2]. To expand the application of aerosol delivery, novel approaches are needed. To address this need, we have explored various applications of nanoparticle immune engineering for respiratory therapeutics[3]. Incorrect immune responses lie at the heart of most respiratory diseases and advances in these therapeutic areas requires consideration of the unique environment. Notably, the lung has an abundance of antigen presenting cells (APCs), such as macrophages and dendritic cells (DC), which phagocytose foreign materials at the air-lung interface. There are a number of lung-specific APC populations[4, 5]. Some subsets are well understood, however, other specialized subsets have only recently been identified due to historic challenges in differentiating these populations[6, 7]. Thus, there are many remaining questions as to the division of labor between these cells, their significance in different disease conditions, and their interactions with other adjacent cell populations at the mucosal interface[8]. Advancing this understanding is critical to develop new therapeutics; APCs are poised as the gatekeepers to lung regulation and lung DC-subset specifically are likely cellular targets for therapeutic intervention[9]. In order to better understand how these lung innate immune cells respond to inhaled particle therapeutics, we have developed sets of engineered particles with defined physical properties that originate at the molecular level. We have developed a series of metal organic framework (MOF) nanoparticle carriers with independently tunable particle size and internal porosity, enabling systematic investigation of the effect of particle pore structure on cellular interactions. These UIO-66 MOF derivatives have not only been optimized as pulmonary aerosol carriers but provide critical insight on the role of internal particle porosity following cellular internalization. To further modulate the lung immune environment and evaluate the role of ligand surface density on immune-modulation, we simultaneously developed a series of degradable polymeric nanoparticle carriers with controlled surface densities of two Toll-like receptor (TLR) ligands, lipopolysaccharide (LPS), corresponding to TLR-4, and CpG oligodeoxynucleotide, corresponding to TLR-9[10]. Our in vitro results with murine bone marrow derived macrophages and in vivo studies following a direct instillation to murine airways both support a trade-off between particle dosage and optimal surface density; proinflammatory cytokine production was driven by the distribution of the adjuvant dose to a maximal number of innate cells, whereas the upregulation of costimulatory molecules on individual cells required an optimal density of TLR ligand on the particle surface. Taken together, results from these two sets of particle types demonstrate that both particle porosity and ligand surface density are critical parameters for tight control of immune stimulation and association with lung APCs and provide a foundation to build pathogen mimicking particle (PMP) vaccines and immunostimulatory therapeutics. References: 1. WHO: World Health Organization 2012. 2. NIH: National Heart, Lung, and Blood Institute 2012. 3. Moon, J. J.; Huang, B.; Irvine, D. J., Advanced materials (Deerfield Beach, Fla.) 2012, 24 (28), 3724-46. 4. Guilliams, M.; Lambrecht, B. N.; Hammad, H., Mucosal Immunol 2013, 6 (3), 464-73. 5. Kopf, M.; Schneider, C.; Nobs, S. P., Nat Immunol 2015, 16 (1), 36-44. 6. Blank, F.; Stumbles, P. A.; Seydoux, E.; Holt, P. G.; Fink, A.; Rothen-Rutishauser, B.; Strickland, D. H.; von Garnier, C., Am J Respir Cell Mol Biol 2013, 49 (1), 67-77. 7. Fytianos, K.; Drasler, B.; Blank, F.; von Garnier, C.; Seydoux, E.; Rodriguez-Lorenzo, L.; Petri-Fink, A.; Rothen-Rutishauser, B., Nanomedicine (Lond) 2016, 11 (18), 2457-2469. 8. Hasenberg, M.; Stegemann-Koniszewski, S.; Gunzer, M., Immunol Rev 2013, 25 (1), 189-214. 9. Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C. X.; Mitter, N.; Yu, C.; Middelberg, A. P., Vaccine 2014, 32 (3), 327-37. 10. Noble, J.; Zimmerman, A.; Fromen, C. A., ACS Biomater Sci Eng 2017, 3 (4), 560-571

    Polynomial-time sortable stacks of burnt pancakes

    Get PDF
    Pancake flipping, a famous open problem in computer science, can be formalised as the problem of sorting a permutation of positive integers using as few prefix reversals as possible. In that context, a prefix reversal of length k reverses the order of the first k elements of the permutation. The burnt variant of pancake flipping involves permutations of signed integers, and reversals in that case not only reverse the order of elements but also invert their signs. Although three decades have now passed since the first works on these problems, neither their computational complexity nor the maximal number of prefix reversals needed to sort a permutation is yet known. In this work, we prove a new lower bound for sorting burnt pancakes, and show that an important class of permutations, known as "simple permutations", can be optimally sorted in polynomial time.Comment: Accepted pending minor revisio

    Elevated inflammatory biomarkers and poor outcomes in intracerebral hemorrhage

    Get PDF
    Background: Accumulating evidence suggests that spontaneous intracerebral hemorrhage (ICH) is associated with a reactive neuroinflammatory response. However, it remains unclear if circulating inflammatory biomarkers are associated with adverse outcomes in ICH. To address this knowledge gap, we conducted a cohort study using a prospectively maintained stroke register in the United Kingdom to assess the prognostic value of admission inflammatory biomarkers in ICH. Methods: The Norfolk and Norwich Stroke and TIA Register recorded consecutive ICH cases. The primary exposures of interest were elevation of white cell count (WCC; > 10 × 109/L), elevation of c-reactive protein (CRP; > 10 mg/L), and co-elevation of both biomarkers, at the time of admission. Modified Poisson and Cox regressions were conducted to investigate the relationship between co-elevation of WCC and CRP at admission and outcomes following ICH. Functional outcome, multiple mortality timepoints, and length of stay were assessed. Results: In total, 1714 ICH cases were identified from the register. After adjusting for covariates, including stroke-associated pneumonia, co-elevation of WCC and CRP at admission was independently associated with significantly increased risk of poor functional outcome (RR 1.08 [95% CI 1.01–1.15]) and inpatient mortality (RR 1.21 [95% CI 1.06–1.39]); and increased 90-day (HR 1.22 [95% CI 1.03–1.45]), and 1-year mortality (HR 1.20 [95% CI 1.02–1.41]). Individual elevation of WCC or CRP was also associated with poor outcomes. Conclusions: Elevated inflammatory biomarkers were associated with poor outcomes in ICH. This study indicates that these readily available biomarkers may be valuable for prognostication and underscore the importance of inflammation in ICH

    Multiculturalism and moderate secularism

    Get PDF
    What is sometimes talked about as the ‘post-secular’ or a ‘crisis of secularism’ is, in Western Europe, quite crucially to do with the reality of multiculturalism. By which I mean not just the fact of new ethno-religious diversity but the presence of a multiculturalist approach to this diversity, namely: the idea that equality must be extended from uniformity of treatment to include respect for difference; recognition of public/private interdependence rather than dichotomized as in classical liberalism; the public recognition and institutional accommodation of minorities; the reversal of marginalisation and a remaking of national citizenship so that all can have a sense of belonging to it. I think that equality requires that this ethno-cultural multiculturalism should be extended to include state-religion connexions in Western Europe, which I characterise as ‘moderate secularism’, based on the idea that political authority should not be subordinated to religious authority yet religion can be a public good which the state should assist in realising or utilising. I discuss here three multiculturalist approaches that contend this multiculturalising of moderate secularism is not the way forward. One excludes religious groups and secularism from the scope of multiculturalism (Kymlicka); another largely limits itself to opposing the ‘othering’ of groups such as Jews and Muslims (Jansen); and the third argues that moderate secularism is the problem not the solution (Bhargava)

    Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects

    Get PDF
    Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications. </p

    Distributed Multipoles from a Robust Basis-Space Implementation of the Iterated Stockholder Atoms Procedure

    Get PDF
    The recently developed iterated stockholder atoms (ISA) approach of Lillestolen and Wheatley (<i>Chem. Commun.</i> <b>2008</b>, 5909) offers a powerful method for defining atoms in a molecule. However, the real-space algorithm is known to converge very slowly, if at all. Here, we present a robust, basis-space algorithm of the ISA method and demonstrate its applicability on a variety of systems. We show that this algorithm exhibits rapid convergence (taking around 10–80 iterations) with the number of iterations needed being unrelated to the system size or basis set used. Further, we show that the multipole moments calculated using this basis-space ISA method are as good as, or better than, those obtained from Stone’s distributed multipole analysis (<i>J. Chem. Theory Comput.</i> <b>2005</b>, <i>1</i>, 1128), exhibiting better convergence properties and resulting in better behaved penetration energies. This can have significant consequences in the development of intermolecular interaction models

    Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia

    Get PDF
    Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML survival and could be a therapeutic target in AML

    Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease

    Get PDF
    International audiencePURPOSE: Increased type I interferon is considered relevant to the pathology of a number of monogenic and complex disorders spanning pediatric rheumatology, neurology, and dermatology. However, no test exists in routine clinical practice to identify enhanced interferon signaling, thus limiting the ability to diagnose and monitor treatment of these diseases. Here, we set out to investigate the use of an assay measuring the expression of a panel of interferon-stimulated genes (ISGs) in children affected by a range of inflammatory diseases. DESIGN, SETTING, AND PARTICIPANTS: A cohort study was conducted between 2011 and 2016 at the University of Manchester, UK, and the Institut Imagine, Paris, France. RNA PAXgene blood samples and clinical data were collected from controls and symptomatic patients with a genetically confirmed or clinically well-defined inflammatory phenotype. The expression of six ISGs was measured by quantitative polymerase chain reaction, and the median fold change was used to calculate an interferon score (IS) for each subject compared to a previously derived panel of 29 controls (where +2 SD of the control data, an IS of \textgreater2.466, is considered as abnormal). Results were correlated with genetic and clinical data. RESULTS: Nine hundred ninety-two samples were analyzed from 630 individuals comprising symptomatic patients across 24 inflammatory genotypes/phenotypes, unaffected heterozygous carriers, and controls. A consistent upregulation of ISG expression was seen in 13 monogenic conditions (455 samples, 265 patients; median IS 10.73, interquartile range (IQR) 5.90-18.41), juvenile systemic lupus erythematosus (78 samples, 55 patients; median IS 10.60, IQR 3.99-17.27), and juvenile dermatomyositis (101 samples, 59 patients; median IS 9.02, IQR 2.51-21.73) compared to controls (78 samples, 65 subjects; median IS 0.688, IQR 0.427-1.196), heterozygous mutation carriers (89 samples, 76 subjects; median IS 0.862, IQR 0.493-1.942), and individuals with non-molecularly defined autoinflammation (89 samples, 69 patients; median IS 1.07, IQR 0.491-3.74). CONCLUSIONS AND RELEVANCE: An assessment of six ISGs can be used to define a spectrum of inflammatory diseases related to enhanced type I interferon signaling. If future studies demonstrate that the IS is a reactive biomarker, this measure may prove useful both in the diagnosis and the assessment of treatment efficacy

    Medial longitudinal arch development of school children : The College of Podiatry Annual Conference 2015: meeting abstracts

    Get PDF
    Background Foot structure is often classified into flat foot, neutral and high arch type based on the variability of the Medial Longitudinal Arch (MLA). To date, the literature provided contrasting evidence on the age when MLA development stabilises in children. The influence of footwear on MLA development is also unknown. Aim This study aims to (i) clarify whether the MLA is still changing in children from age 7 to 9 years old and (ii) explore the relationship between footwear usage and MLA development, using a longitudinal approach. Methods We evaluated the MLA of 111 healthy school children [age = 6.9 (0.3) years] using three parameters [arch index (AI), midfoot peak pressure (PP) and maximum force (MF: % of body weight)] extracted from dynamic foot loading measurements at baseline, 10-month and 22-month follow-up. Information on the type of footwear worn was collected using survey question. Linear mixed modelling was used to test for differences in the MLA over time. Results Insignificant changes in all MLA parameters were observed over time [AI: P = .15; PP: P = .84; MF: P = .91]. When gender was considered, the AI of boys decreased with age [P = .02]. Boys also displayed a flatter MLA than girls at age 6.9 years [AI: mean difference = 0.02 (0.01, 0.04); P = .02]. At baseline, subjects who wore close-toe shoes displayed the lowest MLA overall [AI/PP/MF: P < .05]. Subjects who used slippers when commencing footwear use experienced higher PP than those who wore sandals [mean difference = 31.60 (1.44, 61.75) kPa; post-hoc P = .04]. Discussion and conclusion Our findings suggested that the MLA of children remained stable from 7 to 9 years old, while gender and the type of footwear worn during childhood may influence MLA development. Clinicians may choose to commence therapy when a child presents with painful flexible flat foot at age 7 years, and may discourage younger children from wearing slippers when they commence using footwear
    corecore