359 research outputs found

    Fluid phase equilibria of the reacting mixture in the dimethyl carbonate synthesis from supercritical CO2

    Get PDF
    In order to investigate the dimethyl carbonate synthesis from methanol and supercritical CO2, the thermodynamic behaviour of the reacting mixture, i.e. the quaternary methanol/CO2/DMC/water mixture, has to be known. The SRK equation of state with MHV2 mixing rules has been chosen to predict fluid phase equilibria in the reactor. The first part of this work is dedicated to the determination of binary interaction parameters, needed in the use of this model. These parameters are deduced from the fitting of experimental data concerning binary or ternary sub-systems existing in the quaternary mixture. Literature data was used for most of the binary sub-systems, but for the DMC/CO2 and DMC/water mixtures, specific experiments were carried out. The agreement between experimental and predicted fluid phase equilibria was found to be satisfactory. With a view to studying of the operating conditions for the reaction, the thermodynamic model was used to predict fluid phase equilibria in the reactor, by considering several hypothetical feed ratios and conversions. This work shows that CO2 has to be used in large excess in order to be sure of running the reaction in a homogeneous fluid medium

    Rare BANF1 Alleles and Relatively Frequent EMD Alleles Including `Healthy Lipid' Emerin p.D149H in the ExAC Cohort

    Get PDF
    Emerin (EMD) and barrier to autointegration factor 1 (BANF1) each bind A-type lamins (LMNA) as fundamental components of nuclear lamina structure. Mutations in LMNA, EMD and BANF1 are genetically linked to many tissue-specific disorders including Emery-Dreifuss muscular dystrophy and cardiomyopathy (LMNA, EMD), lipodystrophy, insulin resistance and type 2 diabetes (LMNA) and progeria (LMNA, BANF1). To explore human genetic variation in these genes, we analyzed EMD and BANF1 alleles in the Exome Aggregation Consortium (ExAC) cohort of 60,706 unrelated individuals. We identified 13 rare heterozygous BANF1 missense variants (p.T2S, p.H7Y, p.D9N, p.S22R, p.G25E, p.D55N, p.D57Y, p.L63P, p.N70T, p.K72R, p.R75W, p.R75Q, p.G79R), and one homozygous variant (p.D9H). Several variants are known (p.G25E) or predicted (e.g., p.D9H, p.D9N, p.L63P) to perturb BANF1 and warrant further study. Analysis of EMD revealed two previously identified variants associated with adult-onset cardiomyopathy (p.K37del, p.E35K) and one deemed `benign' in an Emery-Dreifuss patient (p.D149H). Interestingly p.D149H was the most frequent emerin variant in ExAC, identified in 58 individuals (overall allele frequency 0.06645%), of whom 55 were East Asian (allele frequency 0.8297%). Furthermore, p.D149H associated with four `healthy' traits: reduced triglycerides (-0.336; p = 0.0368), reduced waist circumference (-0.321; p = 0.0486), reduced cholesterol (-0.572; p = 0.000346) and reduced LDL cholesterol (-0.599; p = 0.000272). These traits are distinct from LMNA-associated metabolic disorders and provide the first insight that emerin influences metabolism. We also identified one novel in-frame deletion (p.F39del) and 62 novel emerin missense variants, many of which were relatively frequent and potentially disruptive including p.N91S and p.S143F (0.041% and -0.034% of non-Finnish Europeans, respectively), p.G156S (-0.39% of Africans), p.R204G (-0.18% of Latinx), p.R207P (-0.08% of South Asians) and p.R221L (-0.15% of Latinx). Many novel BANF1 variants are predicted to disrupt dimerization or binding to DNA, histones, emerin or A-type lamins. Many novel emerin variants are predicted to disrupt emerin filament dynamics or binding to BANF1, HDAC3, A-type lamins or other partners. These new human variants provide a foundational resource for future studies to test the molecular mechanisms of BANF1 and emerin function, and to understand the link between emerin variant p.D149H and a `healthy' lipid profile

    The First Case of X-linked Alpha-thalassemia/Mental Retardation (ATR-X) Syndrome in Korea

    Get PDF
    Mutation of the ATRX gene leads to X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome and several other X-linked mental retardation syndromes. We report the first case of ATR-X syndrome documented here in Korea. A 32-month-old boy came in with irritability and fever. He showed dysmorphic features, mental retardation and epilepsy, so ATR-X syndrome was considered. Hemoglobin H inclusions in red blood cells supported the diagnosis and genetic studies confirmed it. Mutation analysis for our patient showed a point mutation of thymine to cytosine on the 9th exon in the ATRX gene, indicating that Trp(C), the 220th amino acid, was replaced by Ser(R). Furthermore, we investigated the same mutation in family members, and his mother and two sisters were found to be carriers

    Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    Get PDF
    Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling

    Missense Mutation of TTC7A Mimicking Tricho-Hepato-Enteric (SD/THE) Syndrome in a Patient with Very-Early Onset Inflammatory Bowel Disease

    Get PDF
    Tricho-hepato-enteric syndrome (SD/THE) and Multiple intestinal atresia with combined immune deficiency (MIA-CID) are autosomal recessive disorders that present immunological and gastrointestinal features. There are two different phenotypes of patients with TTC7A mutations: the severe form, caused by null mutations and leading to the classical MIA-CID; and the mild form, caused by missense mutations and leading to predominant features of VEO-IBD, less severe immunological involvement and hair abnormalities. We expand the knowledge about TTC7A deficiency, describing a patient with the mild phenotype of TTC7A deficiency but presenting overlapping features of SD/THE and MIA-CID: intestinal atresia and inflammatory bowel disease evocative of MIA-CID, but also dental abnormalities, huge forehead, liver abnormalities, autoimmune thyroiditis and hypogammaglobulinemia, evocative of SD/THE.info:eu-repo/semantics/publishedVersio

    Glucose-6-Phosphate Dehydrogenase Deficiency in an Endemic Area for Malaria in Manaus: A Cross-Sectional Survey in the Brazilian Amazon

    Get PDF
    BACKGROUND: There is a paucity of information regarding glucose-6-phosphate dehydrogenase (G6PD) deficiency in endemic areas for malaria in Latin America. METHODOLOGY/PRINCIPAL FINDINGS: This study determined the prevalence of the G6PD deficiency in 200 male non-consanguineous individuals residing in the Ismail Aziz Community, on the outskirts of Manaus (Brazilian Amazon). Six individuals (3%) were deficient using the qualitative Brewer's test. Gel electrophoresis showed that five of these patients were G6PD A(-). The deficiency was not associated with the ethnic origin (P = 0.571). In a multivariate logistic regression analysis, G6PD deficiency protected against three or more episodes of malaria (P = 0.049), independently of the age, and was associated with a history of jaundice (P = 0.020) and need of blood transfusion (P = 0.045) during previous treatment for malarial infection, independently of the age and the previous malarial exposure. CONCLUSIONS/SIGNIFICANCE: The frequency of G6PD deficiency was similar to other studies performed in Brazil and the finding of a predominant G6PD A(-) variant will help the clinical management of patients with drug-induced haemolysis. The history of jaundice and blood transfusion during previous malarial infection may trigger the screening of patients for G6PD deficiency. The apparent protection against multiple malarial infections in an area primarily endemic for Plasmodium vivax needs further investigation

    Loss of ATRX in Chondrocytes Has Minimal Effects on Skeletal Development

    Get PDF
    BACKGROUND:Mutations in the human ATRX gene cause developmental defects, including skeletal deformities and dwarfism. ATRX encodes a chromatin remodeling protein, however the role of ATRX in skeletal development is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS:We induced Atrx deletion in mouse cartilage using the Cre-loxP system, with Cre expression driven by the collagen II (Col2a1) promoter. Growth rate, body size and weight, and long bone length did not differ in Atrx(Col2cre) mice compared to control littermates. Histological analyses of the growth plate did not reveal any differences between control and mutant mice. Expression patterns of Sox9, a transcription factor required for cartilage morphogenesis, and p57, a marker of cell cycle arrest and hypertrophic chondrocyte differentiation, was unaffected. However, loss of ATRX in cartilage led to a delay in the ossification of the hips in some mice. We also observed hindlimb polydactily in one out of 61 mutants. CONCLUSIONS/SIGNIFICANCE:These findings indicate that ATRX is not directly required for development or growth of cartilage in the mouse, suggesting that the short stature in ATR-X patients is caused by defects in cartilage-extrinsic mechanisms

    The molecular basis of beta-thalassemia intermedia in southern China: genotypic heterogeneity and phenotypic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical syndrome of thalassemia intermedia (TI) results from the β-globin genotypes in combination with factors to produce fetal haemoglobin (HbF) and/or co-inheritance of α-thalassemia. However, very little is currently known of the molecular basis of Chinese TI patients.</p> <p>Methods</p> <p>We systematically analyzed and characterized β-globin genotypes, α-thalassemia determinants, and known primary genetic modifiers linked to the production of HbF and the aggravation of α/β imbalance in 117 Chinese TI patients. Genotype-phenotype correlations were analyzed based on retrospective clinical observations.</p> <p>Results</p> <p>A total of 117 TI patients were divided into two major groups, namely heterozygous β-thalassemia (n = 20) in which 14 were characterized as having a mild TI with the Hb levels of 68-95 g/L except for five co-inherited ααα<sup>anti-3.7 </sup>triplication and one carried a dominant mutation; and β-thalassemia homozygotes or compound heterozygotes for β-thalassemia and other β-globin defects in which the β<sup>+</sup>-thalassemia mutation was the most common (49/97), hemoglobin E (HbE) variants was second (27/97), and deletional hereditary persistence of fetal hemoglobin (HPFH) or δβ-thalassemia was third (11/97). Two novel mutations, Term CD+32(A→C) and Cap+39(C→T), have been detected.</p> <p>Conclusions</p> <p>Chinese TI patients showed considerable heterogeneity, both phenotypically and genotypically. The clinical outcomes of our TI patients were mostly explained by the genotypes linked to the β- and α-globin gene cluster. However, for a group of 14 patients (13 β<sup>0</sup>/β<sup>N </sup>and 1 β<sup>+</sup>/β<sup>N</sup>) with known heterozygous mutations of β-thalassemia and three with homozygous β-thalassemia (β<sup>0</sup>/β<sup>0</sup>), the existence of other causative genetic determinants is remaining to be molecularly defined.</p

    Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy

    Get PDF
    Objective:To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.Methods:We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.Results:We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families.Conclusions:De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.Johannes R. Lemke (32EP30_136042/1) and Peter De Jonghe (G.A.136.11.N and FWO/ESF-ECRP) received financial support within the EuroEPINOMICS-RES network (www.euroepinomics.org) within the Eurocores framework of the European Science Foundation (ESF). Saskia Biskup and Henrike Heyne received financial support from the German Federal Ministry for Education and Research (BMBF IonNeurONet: 01 GM1105A and FKZ: 01EO1501). Katia Hardies is a PhD fellow of the Institute for Science and Technology (IWT) Flanders. Ingo Helbig was supported by intramural funds of the University of Kiel, by a grant from the German Research Foundation (HE5415/3-1) within the EuroEPINOMICS framework of the European Science Foundation, and additional grants of the German Research Foundation (DFG, HE5415/5-1, HE 5415/6-1), German Ministry for Education and Research (01DH12033, MAR 10/012), and grant by the German chapter of the International League against Epilepsy (DGfE). The project also received infrastructural support through the Institute of Clinical Molecular Biology in Kiel, supported in part by DFG Cluster of Excellence "Inflammation at Interfaces" and "Future Ocean." The project was also supported by the popgen 2.0 network (P2N) through a grant from the German Ministry for Education and Research (01EY1103) and by the International Coordination Action (ICA) grant G0E8614N. Christel Depienne, Caroline Nava, and Delphine Heron received financial support for exome analyses by the Centre National de Genotypage (CNG, Evry, France)
    corecore