15 research outputs found

    Development of serological assay for detection of antibodies in the N protein of SARS-CoV-2 in human sera in Mongolia

    Get PDF
    The capability to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and identify immune responses among the population is crucial for managing the outbreak of the COVID-19 pandemic. Although PCR-based nucleic acid detection techniques are utilized to detect viral infection in people, alternative tests capable of distinguishing between exposure and infection are urgently needed beyond this restricted window of detectable viral replication. Antibodies are produced in human sera within a few days after viral infection, providing longer period for performing tests to acquire reliable database. Herewith, we provide the results of our in-house developed ELISA (Enzyme-Linked Immunosorbent Assay) that displays all of the properties necessary for high-throughput of human sera sample analysis. This test does not involve the handling of live viruses, although it detects a variety of antibody types in serum and plasma of human after exposure to the virus. For in-house development of the kit, the nucleocapsid (N) gene of SARS-CoV-2 virus was cloned in the prokaryotic expression vector pGEX-6P-1, and purified N protein was used to detect IgG antibodies in human sera samples. In total 76 human serum samples that were collected before novel coronavirus registry in Mongolia in March 2020, as well as 200 serum samples from patients who had been infected by SARS-CoV-2 virus, were used. Among 200 serum samples, 188 were positive and 12 were false negative, while in non-infected cases 69 were negative and 7 were false positive, suggesting 94 per cent sensitivity and 90.7 per cent specificity of the kit, with p-values of 0.02

    Results from the WHO external quality assessment for the respiratory syncytial virus pilot, 2016-17

    Get PDF
    Background: External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. Methods: The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. Results: Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. Conclusions: These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended. </div

    Results from the WHO external quality assessment for the respiratory syncytial virus pilot, 2016-17

    Get PDF
    BACKGROUND : External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. METHODS : The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. RESULTS : Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. CONCLUSIONS : These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended.The Bill and Melinda Gates Foundation, the Respiratory Viruses Branch, Division of Viral Diseases, CDC, Atlanta, and the CDC International Reagent Resource (IRR), USA.http://www.wileyonlinelibrary.com/journal/irvam2020Medical Virolog

    Results from the second WHO external quality assessment for the molecular detection of respiratory syncytial virus, 2019-2020

    Get PDF
    BACKGROUND: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. METHODS: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. RESULTS: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. CONCLUSIONS: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background: Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (<5 years) and older people (≥65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control. Methods: In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5° by 5° grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628. Findings: We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0·3 months [95% CI −0·3 to 0·9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3·8 months [3·6 to 4·0]) in temperate sites and longer duration (5·2 months [4·9 to 5·5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4·6 months [4·3 to 4·8]), as it was for metapneumovirus (4·8 months [4·4 to 5·1]). By comparison, parainfluenza virus had longer duration of epidemics (6·3 months [6·0 to 6·7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus −0·2 months [−0·6 to 0·1]; respiratory syncytial virus 0·1 months [−0·2 to 0·4]). Interpretation: This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Funding: European Union Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU)

    Influenza B viruses circulated during last 5 years in Mongolia.

    No full text
    Influenza B virus-caused illness has recently been considered as an urgent public health problem due to substantial morbidity, mortality and life-threatening medical complications. In this study, we have reported the main characteristics of influenza B virus in Mongolia, including prevalence, lineages, suitability with vaccine strains and drug susceptibility against the virus. 15768 specimens were tested by qPCR for detecting influenza viruses. From positive specimens for influenza B virus, the clinical isolates were isolated using MDCK cells. Sequencing analysis, hemagglutination inhibition assay and Neuraminidase inhibitor (NAI) drug susceptibility testing were performed for the clinical isolates. Influenza B virus was around in 3.46% of the samples in Mongolia, and B/Victoria clade-1A and B/Yamagata clade-3 lineages were predominant. Importantly, it was confirmed that the lineages corresponded to the vaccine strains. Moreover, drug susceptibility tests revealed that some Mongolian clinical isolates showed reduced susceptibility to antiviral agents. Interestingly, G104R was identified as a novel mutation, which might have a significant role in drug resistance of the virus. These results describe the characteristics of influenza B viruses that have caused respiratory illness in the population of Mongolia between 2013 and 2017

    Results from the WHO external quality assessment for the respiratory syncytial virus pilot, 2016-17

    Get PDF
    BACKGROUND: External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. METHODS: The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. RESULTS: Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. CONCLUSIONS: These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended
    corecore