142 research outputs found
Topography induced optical spectral shifts and finite size effect of focal spot
We observe topography induced spectral shifts using high resolution grating
spectrometers which we attribute to the fact that the focal spot has a finite
size. The topography induced spectral shifts depend on spectrometer grating
orientation and numerical aperture of the microscope objective. This is
demonstrated by spectroscopic imaging trenches in GaAs in directions parallel
and perpendicular the spectrometer entrance slit. Differences along the two
directions of the LO phonon band show that the spectral shift is due to the
variation of the grating angle across the non uniform illuminated focal spot
caused by topography. Alignment errors of the optical axis lead to additional
spectral shifts. Topography induced spectral shifts can be detected by
recording spectra by scanning the sample in two perpendicular orientations with
respect to the spectrometer entrance slit.Comment: 9 pages, 3 figure
Tunable Resonant Raman Scattering from Singly Resonant Single Wall Carbon Nanotubes
We perform tunable resonant Raman scattering on 17 semiconducting and 7
metallic singly resonant single wall carbon nanotubes. The measured scattering
cross-section as a function laser energy provides information about a tube's
electronic structure, the lifetime of intermediate states involved in the
scattering process and also energies of zone center optical phonons. Recording
the scattered Raman signal as a function of tube location in the microscope
focal plane allows us to construct two-dimensional spatial maps of singly
resonant tubes. We also describe a spectral nanoscale artifact we have coined
the "nano-slit effect"
Leading interactions in the - compound
The present study shows that the electronic structure of the
- family of compounds () is based on
weakly interacting two-leg ladders, in contrast with the zig-zag chain model
one could expect from their crystal structure. Spin dimer analysis, based on
extended H\"{u}ckel tight-binding calculations, was performed to determine the
structure of the dominant transfer and magnetic interactions in the room
temperature - phase. Two different two-legs ladders,
associated with different charge/spin orders are proposed to describe these
one-dimensional -type systems. The antiferromagnetic ladders are packed
in an 'IPN' geometry and coupled to each other through weak antiferromagnetic
interactions. This arrangement of the dominant interactions explains the
otherwise surprising similarities of the optical conductivity and Raman spectra
for the one-dimensional -type phases and the two-dimensional
-type ones such as the well-known - system
Strong electron correlations in the normal state of FeSe0.42Te0.58
We investigate the normal state of the '11' iron-based superconductor
FeSe0.42Te0.58 by angle resolved photoemission. Our data reveal a highly
renormalized quasiparticle dispersion characteristic of a strongly correlated
metal. We find sheet dependent effective carrier masses between ~ 3 - 16 m_e
corresponding to a mass enhancement over band structure values of m*/m_band ~ 6
- 20. This is nearly an order of magnitude higher than the renormalization
reported previously for iron-arsenide superconductors of the '1111' and '122'
families but fully consistent with the bulk specific heat.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
Chirality of internal metallic and semiconducting carbon nanotubes
We have assigned the chirality of the internal tubes of double walled carbon nanotubes grown by catalytic chemical vapor deposition using the high sensitivity of the radial breathing ~RB! mode in inelastic lightscattering experiments. The deduced chirality corresponds to several semiconducting and only two metallic internal tubes. The RB modes are systematically shifted to higher energies when compared to theoretical values. The difference between experimental and theoretical energies of the RB modes of metallic tubes and semiconducting tubes are discussed in terms of the reduced interlayer distance between the internal and the external tube and electronic resonance effects. We find several pairs of RB modes corresponding to different diameters of internal and external tubes
Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts
The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mošssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper
Electronic states and quantum transport in double-wall carbon nanotubes
Electronic states and transport properties of double-wall carbon nanotubes
without impurities are studied in a systematic manner. It is revealed that
scattering in the bulk is negligible and the number of channels determines the
average conductance. In the case of general incommensurate tubes, separation of
degenerated energy levels due to intertube transfer is suppressed in the energy
region higher than the Fermi energy but not in the energy region lower than
that. Accordingly, in the former case, there are few effects of intertube
transfer on the conductance, while in the latter case, separation of
degenerated energy levels leads to large reduction of the conductance. It is
also found that in some cases antiresonance with edge states in inner tubes
causes an anomalous conductance quantization, , near the Fermi
energy.Comment: 24 pages, 13 figures, to be published in Physical Review
Microwave Assisted Synthesis of Py-Im Polyamides
Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5âČ-WGWWCW-3âČ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps
Effect of Palmitic Acid on the Electrical Conductivity of Carbon NanotubesâEpoxy Resin Composites
We found that the palmitic acid allows an efficient dispersion of carbon nanotubes in the epoxy matrix. We have set up an experimental protocol in order to enhance the CNTs dispersion in epoxy resin. Electrical conductivity is optimal using a 1:1 CNTs to palmitic acid weight ratio. The associated percolation threshold is found between 0.05 and 0.1 wt % CNTs, i.e., between 0.03 and 0.06 vol %. The SEM image shows essentially individual CNTs which is inagreement with conductivity measurements. In comparison with composites without palmitic acid, the use of palmitic acid improves the electrical properties of CNTs-epoxy resin composites
Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction
Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2
revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C
associated with the disorder of the Fe vacancies. Irreversibility observed
during the transition is likely associated with a mobility of intercalated
Alkali atoms. Pressure-dependent synchrotron powder diffraction on
Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that
the I4/m superstructure reflections are present up to pressures of 120 kbar.
This may indicate that the ordering of the Fe vacancies is present in both
superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl
- âŠ