38 research outputs found
Spatial immunophenotyping of the tumour microenvironment in nonâsmall cell lung cancer
Checkpoint therapy; Lung cancer; Tumour microenvironmentTerapia de puntos de control; CĂĄncer de pulmĂłn; Microambiente tumoralTerĂ pia de punts de control; CĂ ncer de pulmĂł; Microambient tumoralIntroduction: Immune cells in the tumour microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterise the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC).
Methods: We established a multiplexed fluorescence imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells (CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural killer cells, natural killer T-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs).
Results: CD4-Eff cells, CD8-Eff cells and M1 macrophages were the most abundant immune cells invading the tumour cell compartment and indicated a patient group with a favourable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4-Eff, CD4-Treg, CD8-Treg, B-cells and pDCs) were independently associated with longer survival. However, when these immune cells were located close to CD8-Treg cells, the favourable impact was attenuated. In the multivariable Cox regression model, including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8-Treg-B-cells, CD8-Eff-cancer cells and B-cells-CD4-Treg) demonstrated positive prognostic impact, whereas short M2-M1 distances were prognostically unfavourable.
Conclusion: We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is crucial for diagnostic use.This study was partly supported by Swedish Cancer Society, The Lions Cancer Foundation Uppsala, Sweden, Selanders Foundation and The Sjöberg Foundation, Sweden
Fibroblast subsets in non-small cell lung cancer : Associations with survival, mutations, and immune features
Background Cancer-associated fibroblasts (CAFs) are molecularly heterogeneous mesenchymal cells that interact with malignant cells and immune cells and confer anti- and protumorigenic functions. Prior in situ profiling studies of human CAFs have largely relied on scoring single markers, thus presenting a limited view of their molecular complexity. Our objective was to study the complex spatial tumor microenvironment of non-small cell lung cancer (NSCLC) with multiple CAF biomarkers, identify novel CAF subsets, and explore their associations with patient outcome. Methods Multiplex fluorescence immunohistochemistry was employed to spatially profile the CAF landscape in 2 population-based NSCLC cohorts (n = 636) using antibodies against 4 fibroblast markers: platelet-derived growth factor receptor-alpha (PDGFRA) and -beta (PDGFRB), fibroblast activation protein (FAP), and alpha-smooth muscle actin (alpha SMA). The CAF subsets were analyzed for their correlations with mutations, immune characteristics, and clinical variables as well as overall survival. Results Two CAF subsets, CAF7 (PDGFRA-/PDGFRB+/FAP+/alpha SMA+) and CAF13 (PDGFRA+/PDGFRB+/FAP-/alpha SMA+), showed statistically significant but opposite associations with tumor histology, driver mutations (tumor protein p53 [TP53] and epidermal growth factor receptor [EGFR]), immune features (programmed death-ligand 1 and CD163), and prognosis. In patients with early stage tumors (pathological tumor-node-metastasis IA-IB), CAF7 and CAF13 acted as independent prognostic factors. Conclusions Multimarker-defined CAF subsets were identified through high-content spatial profiling. The robust associations of CAFs with driver mutations, immune features, and outcome suggest CAFs as essential factors in NSCLC progression and warrant further studies to explore their potential as biomarkers or therapeutic targets. This study also highlights multiplex fluorescence immunohistochemistry-based CAF profiling as a powerful tool for the discovery of clinically relevant CAF subsets.Peer reviewe
Healing in the SĂĄmi North
There is a special emphasis today on integrating traditional healing within health services. However, most areas in which there is a system of traditional healing have undergone colonization and a number of pressures suppressing tradition for hundreds of years. The question arises as to how one can understand todayâs tradition in light of earlier traditions. This article is based on material collected in SĂĄmi areas of Finnmark and Nord-Troms Norway; it compares local healing traditions with what is known of earlier shamanic traditions in the area. The study is based on 27 interviews among healers and their patients. The findings suggest that although local healing traditions among the SĂĄmi in northern Norway have undergone major transformations during the last several hundred years, they may be considered an extension of a long-standing tradition with deep roots in the region. Of special interest are also the new forms tradition may take in todayâs changing global society
The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types
Background: The development of a reactive tumour stroma is a hallmark of tumour progression and pronounced tumour stroma is generally considered to be associated with clinical aggressiveness. The variability between tumour types regarding stroma fraction, and its prognosis associations, have not been systematically analysed.Methods: Using an objective machine-learning method we quantified the tumour stroma in 16 solid cancer types from 2732 patients, representing retrospective tissue collections of surgically resected primary tumours. Image analysis performed tissue segmentation into stromal and epithelial compartment based on pan-cytokeratin staining and autofluorescence patterns.Findings: The stroma fraction was highly variable within and across the tumour types, with kidney cancer showing the lowest and pancreato-biliary type periampullary cancer showing the highest stroma proportion (median 19% and 73% respectively). Adjusted Cox regression models revealed both positive (pancreato-biliary type periampullary cancer and oestrogen negative breast cancer, HR(95%CI)=0.56(0.34-0.92) and HR (95%CI)=0.41(0.17-0.98) respectively) and negative (intestinal type periampullary cancer, HR(95%CI)=3.59 (1.49-8.62)) associations of the tumour stroma fraction with survival.Interpretation: Our study provides an objective quantification of the tumour stroma fraction across major types of solid cancer. Findings strongly argue against the commonly promoted view of a general associations between high stroma abundance and poor prognosis. The results also suggest that full exploitation of the prognostic potential of tumour stroma requires analyses that go beyond determination of stroma abundance.</p
Spatial immune analyses in clinical cancer tissue
Cancer is a leading cause of premature death and lung cancer is the deadliest cancer type, with non-small cell lung cancer (NSCLC) representing 85% of lung cancer cases. Despite promising development in cancer treatment in recent decades, overall prognosis is poor. The aim of this thesis was to explore novel techniques in protein visualization in clinical cancer tissue to better our understanding of cancer immunity and to discover new biomarkers for improved cancer diagnostics. In Paper I traditional immunohistochemistry (IHC) was compared to the in-situ proximity ligation assay (isPLA). Both techniques were applied to stain 12 proteins in 39 cell lines and 37 tissue types. Two different antibodies were used in the IHC assay and in the isPLA, where binding by both antibodies is required to generate detection signals. The comparison of staining patterns showed that the isPLA presents a valuable alternative to traditional IHC. In Paper II cancer tissue from 357 NSCLC patients was immunophenotyped through IHC annotations of 11 different immune markers. A distinct group of cases with a signature of NK cells and/or plasma cells had favorable prognosis despite significantly lower T-cell activation signatures. This study provides a detailed description of the immune landscape in NSCLC, extending previous concepts, and highlights plasma and NK-cells as potential biomarkers for further validation. In Paper III a multiplex-multispectral pipeline was established to explore three immune marker panels in a NSCLC cohort, spatially quantifying 13 immune cell types. The immune composition of NSCLC was analyzed for the prognostic relevance of immune cell coordination. Cell densities and distances were found to contribute independently to prognosis, indicating that spatial information on local immune cell infiltration is crucial for understanding tumor immunity. In Paper IV an extensive characterization of the immune cell landscape of colon cancer identified a prognostic signature based on the ratio of CD8+ lymphocytes to CD68+CD163+ macrophages. This signature was superior to the state-of-the-art âImmunoscoreâ, and was also associated with longer survival when analyzed in other common cancer types. This presents a promising immunological biomarker that warrants further validation as a prognostic and predictive signature in common cancers. In summary, this thesis presents an in-depth study of immune cell infiltration in several cancer types to better understand cancer immunity. Through novel techniques and spatial metrics, we describe immunophenotypes that might contribute to cancer classification and prognostication. The identified immune phenomena may also present alternative treatment targets to overcome resistance to immunotherapy
Spatial immune analyses in clinical cancer tissue
Cancer is a leading cause of premature death and lung cancer is the deadliest cancer type, with non-small cell lung cancer (NSCLC) representing 85% of lung cancer cases. Despite promising development in cancer treatment in recent decades, overall prognosis is poor. The aim of this thesis was to explore novel techniques in protein visualization in clinical cancer tissue to better our understanding of cancer immunity and to discover new biomarkers for improved cancer diagnostics. In Paper I traditional immunohistochemistry (IHC) was compared to the in-situ proximity ligation assay (isPLA). Both techniques were applied to stain 12 proteins in 39 cell lines and 37 tissue types. Two different antibodies were used in the IHC assay and in the isPLA, where binding by both antibodies is required to generate detection signals. The comparison of staining patterns showed that the isPLA presents a valuable alternative to traditional IHC. In Paper II cancer tissue from 357 NSCLC patients was immunophenotyped through IHC annotations of 11 different immune markers. A distinct group of cases with a signature of NK cells and/or plasma cells had favorable prognosis despite significantly lower T-cell activation signatures. This study provides a detailed description of the immune landscape in NSCLC, extending previous concepts, and highlights plasma and NK-cells as potential biomarkers for further validation. In Paper III a multiplex-multispectral pipeline was established to explore three immune marker panels in a NSCLC cohort, spatially quantifying 13 immune cell types. The immune composition of NSCLC was analyzed for the prognostic relevance of immune cell coordination. Cell densities and distances were found to contribute independently to prognosis, indicating that spatial information on local immune cell infiltration is crucial for understanding tumor immunity. In Paper IV an extensive characterization of the immune cell landscape of colon cancer identified a prognostic signature based on the ratio of CD8+ lymphocytes to CD68+CD163+ macrophages. This signature was superior to the state-of-the-art âImmunoscoreâ, and was also associated with longer survival when analyzed in other common cancer types. This presents a promising immunological biomarker that warrants further validation as a prognostic and predictive signature in common cancers. In summary, this thesis presents an in-depth study of immune cell infiltration in several cancer types to better understand cancer immunity. Through novel techniques and spatial metrics, we describe immunophenotypes that might contribute to cancer classification and prognostication. The identified immune phenomena may also present alternative treatment targets to overcome resistance to immunotherapy
Ekonomistyrning, i lagens namn. : En kvalitativ fallstudie om anvÀndning av styrmedel i en modern offentlig sektor.
Bakgrund: Polismyndigheten genomförde en stor omorganisation Är 2015 med syfte till att effektivisera verksamheten och pÄ sÄ sett sÀnka kostnaden och bidra till en flexiblare styrning, vilket skulle bidra till ett högre resultat i verksamheten. Syfte: Syftet med studien Àr att studera hur förvaltningsteorierna Public Administration, New Public Management och New Public Governance speglas i styrning av modern offentlig sektor genom att studera förÀndringen av anvÀndningen av formella styrmedel pÄ den lokala nivÄn inom Polismyndigheten i Region Syd. Metod: En beskrivning av den forskningsdesign som studien har, dÀr fallstudie har lÀmpat sig och en abduktiv ansats anammats. Vidare förklaras hur studien grundas i empiriska data som samlats in via semistrukturerade intervjuer och dÀrefter beskrivs i en analysprocess. Slutsats: Genomförandet av studien visar pÄ en viss förskjutning av anvÀndning av formella styrmedel. Förskjutningen pÄvisar tendenser mot förvaltningsteorierna Public Administration, New Public Management och New Public Governance. DÀremot kan nÄgot mer tendens urskiljas mot New Public Governance utifrÄn den analys som visar att förÀndringen har inneburit ett större fokus pÄ kommunikation och nÀtverkande inom myndigheten, som utspelar sig genom ett gemensamt helhetstÀnk och genom samarbete inom bÄde regionen men Àven nationellt. Detta ger en bild av hur förvaltning inom en modern offentlig sektor ter sig
Tumor Heterogeneity Confounds Lymphocyte Metrics in Diagnostic Lung Cancer Biopsies
Context.âThe immune microenvironment is involved in fundamental aspects of tumorigenesis, and immune scores are now being developed for clinical diagnostics. Objective.âTo evaluate how well small diagnostic biopsies and tissue microarrays (TMAs) reflect immune cell infiltration compared to the whole tumor slide, in tissue from patients with nonâsmall cell lung cancer. Design.âA TMA was constructed comprising tissue from surgical resection specimens of 58 patients with nonâsmall cell lung cancer, with available preoperative biopsy material. Whole sections, biopsies, and TMA were stained for the pan-T lymphocyte marker CD3 to determine densities of tumor-infiltrating lymphocytes. Immune cell infiltration was assessed semiquantitatively as well as objectively with a microscopic grid count. For 19 of the cases, RNA sequencing data were available. Results.âThe semiquantitative comparison of immune cell infiltration between the whole section and the biopsy displayed fair agreement (intraclass correlation coefficient [ICC], 0.29; P ÂŒ .01; CI, 0.03â0.51). In contrast, the TMA showed substantial agreement compared with the whole slide (ICC, 0.64; P , .001; CI, 0.39â0.79). The grid-based method did not enhance the agreement between the different tissue materials. The comparison of CD3 RNA sequencing data with CD3 cell annotations confirmed the poor representativity of biopsies as well as the stronger correlation for the TMA cores. Conclusions.âAlthough overall lymphocyte infiltration is relatively well represented on TMAs, the representativity in diagnostic lung cancer biopsies is poor. This finding challenges the concept of using biopsies to establish immune scores as prognostic or predictive biomarkers for diagnostic applications