2,746 research outputs found

    Psychological principles of successful aging technologies: A mini-review

    Get PDF
    Based on resource-oriented conceptions of successful life-span development, we propose three principles for evaluating assistive technology: (a) net resource release; (b) person specificity, and (c) proximal versus distal frames of evaluation. We discuss how these general principles can aid the design and evaluation of assistive technology in adulthood and old age, and propose two technological strategies, one targeting sensorimotor and the other cognitive functioning. The sensorimotor strategy aims at releasing cognitive resources such as attention and working memory by reducing the cognitive demands of sensory or sensorimotor aspects of performance. The cognitive strategy attempts to provide adaptive and individualized cuing structures orienting the individual in time and space by providing prompts that connect properties of the environment to the individual's action goals. We argue that intelligent assistive technology continuously adjusts the balance between `environmental support' and `self-initiated processing' in person-specific and aging-sensitive ways, leading to enhanced allocation of cognitive resources. Furthermore, intelligent assistive technology may foster the generation of formerly latent cognitive resources by activating developmental reserves (plasticity). We conclude that `lifespan technology', if co-constructed by behavioral scientists, engineers, and aging individuals, offers great promise for improving both the transition from middle adulthood to old age and the degree of autonomy in old age in present and future generations. Copyright (C) 2008 S. Karger AG, Basel

    Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps.

    Get PDF
    The central part of the Piave River valley in the Venetian pre-Alps of NE Italy exposes an expanded and continuous marine sediment succession that encompasses the Paleocene series and the Paleocene to Eocene transition. The Paleocene through lowermost Eocenemsuccession is >100 m thick and was depositednat middle to lower bathyal depths in a hemipelagic, near-continental setting in the central western Tethys. In the Forada section, the Paleocene succession of limestone-marl couplets is sharply interrupted by an ~3.30- m-thick unit of clays and marls (clay marl unit). The very base of this unit represents the biostratigraphic Paleocene-Eocene boundary, and the entire unit coincides with the main carbon isotope excursion of the Paleocene-Eocene thermal maximum event. Concentrations of hematite and biogenic carbonate, δ13C measurements, and abundance of radiolarians, all oscillate in a cyclical fashion and are interpreted to represent precession cycles. The main excursion interval spans fi ve complete cycles, that is, 105 ± 10 k.y. The overlying carbon isotope recovery interval, which is composed of six distinct limestone-marl couplets, is interpreted to represent six precessional cycles with a duration of 126 ± 12 k.y. The entire carbon isotope excursion interval in Forada has a total duration of ~231 ± 22 k.y., which is 5%–10% longer than previous estimates derived from open ocean sites (210–220 k.y.). Geochemical proxies for redox conditions indicate oxygenated conditions before, during, and after the carbon isotope excursion event. The Forada section exhibits a nonstepped sharp decrease in δ13C (−2.35‰) at the base of the clay marl unit. The hemipelagic, near-continental depositional setting of Forada and the sharply elevated sedimentation rates throughout the clay marl unit argue for continuous rather than interrupted deposition and show that the initial nonstepped carbon isotope shift was not caused by a hiatus. A single sample at the base of the unit lacks biogenic carbonate. Preservation of carbonate thereafter improves progressively up-section in the clay marl unit, which is consistent with a prodigiously abrupt and rapid acidifi cation of the oceans followed by a slower, successive deepening of the carbonate compensation depth. Increased sedimentation rates through the clay marl unit (approximately the main interval of the carbon isotope excursion) are consistent with an intensifi ed hydrological cycle driven by supergreenhouse conditions and enhanced weathering and transport of terrigenous material to this near-continental, hemipelagic environment in the central western Tethys. The sharp transition in lithology from the clay marl unit to the overlying limestonemarl couplets in the recovery interval and the coincident shift toward heavier δ13C values suggest that the silicate pump and continental weathering, the cause of the enhanced terrigenous fl ux to Forada, stopped abruptly. This implies that the source of the light CO2 ceased to be added to the ocean-atmosphere system at the top of the clay marl unit

    Multi-Epoch Observations of HD69830: High Resolution Spectroscopy and Limits to Variability

    Get PDF
    The main-sequence solar-type star HD69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5-7% (1 σ\sigma per spectral element) on the variability of the {\it dust spectrum} over 1 year, 3.3% (1 σ\sigma) on the broad-band disk emission over 4 years, and 33% (1 σ\sigma) on the broad-band disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher SNR spectra do not confirm our previously claimed detection of H2_2O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a ∼\sim 1 AU location for the emitting material

    42. POROSITY AND VELOCITY VS. DEPTH AND EFFECTIVE STRESS IN CARBONATE SEDIMENTS 1

    Get PDF
    ABSTRACT Results from a series of laboratory geotechnical and acoustical tests on carbonate sediments from the Western Indian Ocean are presented. With these data, empirical relationships for variations in porosity (Φ) and compressional and shear wave velocity (V p and V 5 ), with effective stress (σ'), were established. With an σ' vs. depth (z) profile, nontemperature-corrected empirical equations for V^ and V s vs. z were then obtained. These data cover cover only the upper 100 m of sediments. An empirical equation for the variation of shear modulus (G) with z is then established. This is shown to be dominated by the variation of V s with z. The importance of these equations in developing geoacoustical models of the seafloor, which accurately represent in-situ conditions, is assessed. A check of internal consistency was made: values of V p were calculated with V 5 vs. σ' and Φ vs. σ' equations in Gassmann's theory, and comparisons are made with V^ vs. σ' empirical predictions. Uncertainty bounds were calculated for the Gassmann V p predictions, and it was found that empirical V p predictions were close to the upper limits of the Gassmann V^ predictions. We therefore concluded that a partial verification of the internal consistency of the empirical equations was demonstrated

    Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation

    Get PDF
    The meteorological input parameters for urbanand local-scale dispersion models can be evaluated by pre-processing meteorological observations, using a boundarylayer parameterisation model. This study presents a sensitivity analysis of a meteorological preprocessor model (MPP-FMI) that utilises readily available meteorological data as input. The sensitivity of the preprocessor to meteorological input was analysed using algorithmic differentiation (AD). The AD tool used was TAPENADE. The AD method numerically evaluates the partial derivatives of functions that are implemented in a computer program. In this study, we focus on the evaluation of vertical fluxes in the atmosphere and in particular on the sensitivity of the predicted inverse Obukhov length and friction velocity on the model input parameters. The study shows that the estimated inverse Obukhov length and friction velocity are most sensitive to wind speed and second most sensitive to solar irradiation. The dependency on wind speed is most pronounced at low wind speeds. The presented results have implications for improving the meteorological preprocessing models. AD is shown to be an efficient tool for studying the ranges of sensitivities of the predicted parameters on the model input values quantitatively. A wider use of such advanced sensitivity analysis methods could potentially be very useful in analysing and improving the models used in atmospheric sciences.Peer reviewe

    Force balance and membrane shedding at the Red Blood Cell surface

    Full text link
    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and quantitatively reproduces the rate of area loss in aging red-blood cells.Comment: 4 pages, 3 figure

    Measuring light scattering and absorption in corals with Inverse Spectroscopic Optical Coherence Tomography (ISOCT): a new tool for non-invasive monitoring

    Get PDF
    Abstract: The success of reef-building corals for >200 million years has been dependent on the mutualistic interaction between the coral host and its photosynthetic endosymbiont dinoflagellates (family Symbiodiniaceae) that supply the coral host with nutrients and energy for growth and calcification. While multiple light scattering in coral tissue and skeleton significantly enhance the light microenvironment for Symbiodiniaceae, the mechanisms of light propagation in tissue and skeleton remain largely unknown due to a lack of technologies to measure the intrinsic optical properties of both compartments in live corals. Here we introduce ISOCT (inverse spectroscopic optical coherence tomography), a non-invasive approach to measure optical properties and three-dimensional morphology of living corals at micron- and nano-length scales, respectively, which are involved in the control of light propagation. ISOCT enables measurements of optical properties in the visible range and thus allows for characterization of the density of light harvesting pigments in coral. We used ISOCT to characterize the optical scattering coefficient (μs) of the coral skeleton and chlorophyll a concentration of live coral tissue. ISOCT further characterized the overall micro- and nano-morphology of live tissue by measuring differences in the sub-micron spatial mass density distribution (D) that vary throughout the tissue and skeleton and give rise to light scattering, and this enabled estimates of the spatial directionality of light scattering, i.e., the anisotropy coefficient, g. Thus, ISOCT enables imaging of coral nanoscale structures and allows for quantifying light scattering and pigment absorption in live corals. ISOCT could thus be developed into an important tool for rapid, non-invasive monitoring of coral health, growth and photophysiology with unprecedented spatial resolution

    Växtpaleontologiska studier på Åland.

    Get PDF
    Kielet ruotsi, englanti ja saksa. Julkaistu 1961-1964

    Ten-Micron Observations of Nearby Young Stars

    Get PDF
    (abridged) We present new 10-micron photometry of 21 nearby young stars obtained at the Palomar 5-meter and at the Keck I 10-meter telescopes as part of a program to search for dust in the habitable zone of young stars. Thirteen of the stars are in the F-K spectral type range ("solar analogs"), 4 have B or A spectral types, and 4 have spectral type M. We confirm existing IRAS 12-micron and ground-based 10-micron photometry for 10 of the stars, and present new insight into this spectral regime for the rest. Excess emission at 10 micron is not found in any of the young solar analogs, except for a possible 2.4-sigma detection in the G5V star HD 88638. The G2V star HD 107146, which does not display a 10-micron excess, is identified as a new Vega-like candidate, based on our 10-micron photospheric detection, combined with previously unidentified 60-micron and 100-micron IRAS excesses. Among the early-type stars, a 10-micron excess is detected only in HD 109573A (HR 4796A), confirming prior observations; among the M dwarfs, excesses are confirmed in AA Tau, CD -40 8434, and Hen 3-600A. A previously suggested N band excess in the M3 dwarf CD -33 7795 is shown to be consistent with photospheric emission.Comment: 40 pages, 4 figures, 5 tables. To appear in the January 1, 2004 issue of Ap

    Discovery of Two T Dwarf Companions with the Spitzer Space Telescope

    Get PDF
    We report the discovery of T dwarf companions to the nearby stars HN Peg (G0V, 18.4 pc, ~0.3 Gyr) and HD 3651 (K0V, 11.1 pc, ~7 Gyr). During an ongoing survey of 5'x5' fields surrounding stars in the solar neighborhood with IRAC aboard the Spitzer Space Telescope, we identified these companions as candidate T dwarfs based on their mid-IR colors. Using near-IR spectra obtained with SpeX at the NASA IRTF, we confirm the presence of methane absorption that characterizes T dwarfs and measure spectral types of T2.5+/-0.5 and T7.5+/-0.5 for HN Peg B and HD 3651 B, respectively. By comparing our Spitzer data to images from 2MASS obtained several years earlier, we find that the proper motions of HN Peg B and HD 3651 B are consistent with those of the primaries, confirming their companionship. HN Peg B and HD 3651 B have angular separations of 43.2" and 42.9" from their primaries, which correspond to projected physical separations of 795 and 476 AU, respectively. A comparison of their luminosities to the values predicted by theoretical evolutionary models implies masses of 0.021+/-0.009 and 0.051+/-0.014 Msun for HN Peg B and HD 3651 B. In addition, the models imply an effective temperature for HN Peg B that is significantly lower than the values derived for other T dwarfs at similar spectral types, which is the same behavior reported by Metchev & Hillenbrand for the young late-L dwarf HD 203030 B. Thus, the temperature of the L/T transition appears to depend on surface gravity. Meanwhile, HD 3651 B is the first substellar companion directly imaged around a star that is known to harbor a close-in planet from RV surveys. The discovery of this companion supports the notion that the high eccentricities of close-in planets like the one near HD 3651 may be the result of perturbations by low-mass companions at wide separations.Comment: Astrophysical Journal, in pres
    • …
    corecore