305 research outputs found

    The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice

    Get PDF
    Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitro and in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA- MB- 231 cells in correlation with reduced activation of the survival pathway NF kappa B, as a consequence of diminished I kappa B and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NF kappa B activity and transcriptional downregulation of AP-1. NF kappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NF kappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NF kappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible. Copyright (c) 2007 S. Karger AG, Basel

    Development of Resistance towards Artesunate in MDA-MB-231 Human Breast Cancer Cells

    Get PDF
    Breast cancer is the most common cancer and the second leading cause of cancer death in industrialized countries. Systemic treatment of breast cancer is effective at the beginning of therapy. However, after a variable period of time, progression occurs due to therapy resistance. Artesunate, clinically used as anti-malarial agent, has recently revealed remarkable anti-tumor activity offering a role as novel candidate for cancer chemotherapy. We analyzed the anti-tumor effects of artesunate in metastasizing breast carcinoma in vitro and in vivo. Unlike as expected, artesunate induced resistance in highly metastatic human breast cancer cells MDA-MB-231. Likewise acquired resistance led to abolishment of apoptosis and cytotoxicity in pre-treated MDA-MB-231 cells. In contrast, artesunate was more cytotoxic towards the less tumorigenic MDA-MB-468 cells without showing resistance. Unraveling the underlying molecular mechanisms, we found that resistance was induced due to activation of the tumor progression related transcription factors NFκB and AP-1. Thereby transcription, expression and activity of the matrix-degrading enzyme MMP-1, whose function is correlated with increased invasion and metastasis, was up-regulated upon acquisition of resistance. Additionally, activation of the apoptosis-related factor NFκB lead to increased expression of ant-apoptotic bcl2 and reduced expression of pro-apoptotic bax. Application of artesunate in vivo in a model of xenografted breast cancer showed, that tumors growth was not efficiently abolished as compared to the control drug doxorubicin. Taken together our in vitro and in vivo results correlate well showing for the first time that artesunate induces resistance in highly metastatic breast tumors

    Chemical Characteristics of Continental Outflow Over the Tropical South Atlantic Ocean from Brazil and Africa

    Get PDF
    The chemical characteristics of air parcels over the tropical South Atlantic during September - October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH3CL and minimal enhancements of C2CL40, and various ChloroFluoroCarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long-lived species during the local dry season. This may amount to enhancements of up to two-fold for C2H6, 30% for CO, and 10% for CH3Cl. Nitric oxide and NO(x) were significantly enhanced (up to approx. 1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH3Cl. In addition, median mixing ratios of NO and NO(x) were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NO(x) to the upper troposphere. Methane exhibited a monotonic increase with altitude from approx. 1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH3Cl, and CO2, suggesting CH, contributions from natural sources. We also argue, based on CH4/CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH4 and C2H6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH4 and C2H6. Over the African and South American continents an efficient mechanism of convective vertical transport coupled with large-scale circulations conveys biomass burning, urban, and natural emissions to the upper troposphere over the South Atlantic basin. Slow subsidence over the eastern South Atlantic basin may play an important role in establishing and maintaining the rather uniform vertical distribution of long-lived species over this region. The common occurrence of values greater than 1 for the ratio CH3OOH/H2O2 in the upper troposphere suggests that precipitation scavenging effectively removed highly water soluble gases (H2O2, HNO3, HCOOH, and CH3COOH) and aerosols during vertical convective transport over the continents. However, horizontal injection of biomass burning products over the South Atlantic, particularly water soluble species and aerosol particles, was frequent below 6 km altitude

    Intrinsic regulation of hemangioma involution by platelet-derived growth factor

    Get PDF
    Infantile hemangioma is a vascular tumor that exhibits a unique natural cycle of rapid growth followed by involution. Previously, we have shown that hemangiomas arise from CD133+ stem cells that differentiate into endothelial cells when implanted in immunodeficient mice. The same clonally expanded stem cells also produced adipocytes, thus recapitulating the involuting phase of hemangioma. In the present study, we have elucidated the intrinsic mechanisms of adipocyte differentiation using hemangioma-derived stem cells (hemSCs). We found that platelet-derived growth factor (PDGF) is elevated during the proliferating phase and may inhibit adipocyte differentiation. hemSCs expressed high levels of PDGF-B and showed sustained tyrosine phosphorylation of PDGF receptors under basal (unstimulated) conditions. Inhibition of PDGF receptor signaling caused enhanced adipogenesis in hemSCs. Furthermore, exposure of hemSCs to exogenous PDGF-BB reduced the fat content and the expression of adipocyte-specific transcription factors. We also show that these autogenous inhibitory effects are mediated by PDGF receptor-β signaling. In summary, this study identifies PDGF signaling as an intrinsic negative regulator of hemangioma involution and highlights the therapeutic potential of disrupting PDGF signaling for the treatment of hemangiomas

    Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential

    Get PDF
    Background: The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases ( MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs ( RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models ( five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Methods: We analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel). Results: The results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples. Conclusion: Our results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.`Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Pesquisa (CNPq)Financiadora de Estudos e Projetos (FINEP)Pro-Reitoria da Universidade de Sao Paulo (PRP-USP

    In vitro and in vivo MMP gene expression localisation by In Situ-RT-PCR in cell culture and paraffin embedded human breast cancer cell line xenografts

    Get PDF
    BACKGROUND: Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. METHODS: We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. RESULTS: In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. CONCLUSION: We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma
    corecore