1,013 research outputs found

    Effect of cyclosporin and tacrolimus on kidney function in liver recipients

    Get PDF
    The objective of the study was to evaluate the dynamics of renal function, depending on the use of various calcineurin inhibitors in the long-term postoperative period in liver recipients in real clinical practic

    Gender and age differences of compliance in liver transplant recipients

    Get PDF
    The aim of the paper was to evaluate the compliance in patients who have undergone orthotopic liver transplantation (OLT). A voluntary anonymous survey was conducted among liver transplant recipients. The control group included patients with chronic non-infectious diseases requiring persistent treatment. Liver transplant patients have higher levels of general, behavioral and emotional compliance compared to patients with chronic diseases. Neither gender nor age differences were identified in any types of complianc

    Helicity operators for mesons in flight on the lattice

    Full text link
    Motivated by the desire to construct meson-meson operators of definite relative momentum in order to study resonances in lattice QCD, we present a set of single-meson interpolating fields at non-zero momentum that respect the reduced symmetry of a cubic lattice in a finite cubic volume. These operators follow from the subduction of operators of definite helicity into irreducible representations of the appropriate little groups. We show their effectiveness in explicit computations where we find that the spectrum of states interpolated by these operators is close to diagonal in helicity, admitting a description in terms of single-meson states of identified J^{PC}. The variationally determined optimal superpositions of the operators for each state give rapid relaxation in Euclidean time to that state, ideal for the construction of meson-meson operators and for the evaluation of matrix elements at finite momentum.Comment: 25 pages, 14 figures; v2: minor changes to reflect journal versio

    Identification of the Content of Biologically Active Substances in Nut Shots

    Get PDF
    One of ways of the food industry development is a search for non-traditional raw material resources with the high content of physiologically healthy nutrients. A promising way of biologically important raw materials is secondary products of oil production, especially shots. The aim of the research was to determine the content of biologically active substances in nut shots (cedar nut shot (CNS) and walnut shot (WNS)). The quality composition of the phenol nature was established by reactions with 10 % alcohol solutions of FeCl3, NaOH, АlCl3 and cyanidin test. The content of hydroxycinnamic acids (with recalculation for chlorogenic acid) was determined by the spectrophotometric method. The amount of tanning substances – by the method of permanganometry. The analysis of the sum of flavonoids (in recalculation for rutin) was realized by the method of differential spectrophotometry. Carbonic acids were identified by the method of gas-liquid chromatography. There were revealed quality differences in the composition of substances of the phenol nature for CNS and WNS. WNS is characterized by the higher content of hydroxycinnamic acids – in 2,5 times, tanning substances – in 3,1 times and flavonoids – in 60 times, comparing with CNS. The content of unsaturated fats in WNS is 95,79 % of the total number of fats, and in CNS – 80,05 %. The ratio Omega-3/Omega-6 for the fat component of CNS is 1/0,06, and for WNS fats – 1/1,3. WNS comparing with CNS is characterized by the higher content of Malic (in 5,3 times) and fumaric (in 100 times)acid. CNS contains more lemon (in 2,9 times) and succinic (in 2,2 times) acid. That is, identification of the content of some biologically active substances in nut shots allows to recommend them for usage in technologies of food products. It allows to enrich them with phenol compounds, polyunsaturated fats and organic acids

    Limits on non-Gaussianities from WMAP data

    Full text link
    We develop a method to constrain the level of non-Gaussianity of density perturbations when the 3-point function is of the "equilateral" type. Departures from Gaussianity of this form are produced by single field models such as ghost or DBI inflation and in general by the presence of higher order derivative operators in the effective Lagrangian of the inflaton. We show that the induced shape of the 3-point function can be very well approximated by a factorizable form, making the analysis practical. We also show that, unless one has a full sky map with uniform noise, in order to saturate the Cramer-Rao bound for the error on the amplitude of the 3-point function, the estimator must contain a piece that is linear in the data. We apply our technique to the WMAP data obtaining a constraint on the amplitude f_NL^equil of "equilateral" non-Gaussianity: -366 < f_NL^equil < 238 at 95% C.L. We also apply our technique to constrain the so-called "local" shape, which is predicted for example by the curvaton and variable decay width models. We show that the inclusion of the linear piece in the estimator improves the constraint over those obtained by the WMAP team, to -27 < f_NL^local < 121 at 95% C.L.Comment: 20 pages, 12 eps figure

    Physical degrees of freedom in stabilized brane world models

    Full text link
    We consider brane world models with interbrane separation stabilized by the Goldberger-Wise scalar field. For arbitrary background, or vacuum configurations of the gravitational and scalar fields in such models, we construct the second variation Lagrangian, study its gauge invariance, find the corresponding equations of motion and decouple them in a suitable gauge. We also derive an effective four-dimensional Lagrangian for such models, which describes the massless graviton, a tower of massive gravitons and a tower of massive scalars. It is shown that for a special choice of the background solution the masses of the graviton excitations may be of the order of a few TeV, the radion mass of the order of 100 GeV, the inverse size of the extra dimension being tens of GeV. In this case the coupling of the radion to matter on the negative tension brane is approximately the same as in the unstabilized model with the same values of the fundamental five-dimensional energy scale and the interbrane distance.Comment: 17 pages, LaTeX, corrected typos, amended the normalization constants of the scalar modes and their coupling constants to matte

    Some features use graphical editor «KOMPAS 3D» training engineering graphics

    Full text link
    The article discusses how a drawing using the capabilities of the graphical editor «KOMPAS 3D» in teaching students the engineering drawingВ статье рассматриваются способы построения чертежей с использованием возможностей графического редактора «КОМПАС 3D» при обучении студентов инженерной график

    Critical State in Thin Anisotropic Superconductors of Arbitrary Shape

    Full text link
    A thin flat superconductor of arbitrary shape and with arbitrary in-plane and out-of-plane anisotropy of flux-line pinning is considered, in an external magnetic field normal to its plane. It is shown that the general three-dimensional critical state problem for this superconductor reduces to the two-dimensional problem of an infinitely thin sample of the same shape but with a modified induction dependence of the critical sheet current. The methods of solving the latter problem are well known. This finding thus enables one to study the critical states in realistic samples of high-Tc superconductors with various types of anisotropic flux-line pinning. As examples, we investigate the critical states of long strips and rectangular platelets of high-Tc superconductors with pinning either by the ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex

    Dark-field spectroscopy of plasmon resonance in metal nanoislands: effect of shape and light polarization

    Get PDF
    Abstract We present the experimental dark-field scattering studies and the simulation of plasmonic properties of isolated silver nanoislands. The nanoislands were fabricated on a soda- lime glass substrate using silver-sodium ion exchange, subsequent thermal poling and annealing of the processed glass substrate in hydrogen. The morphology of the nanoislands was characterized with atomic force microscopy and scanning electron microscopy; the dimensions were 100-180 nm in base and 80-160 nm in height. We measured and modeled dark-field scattering spectra of the silver hemiellipsoidal nanoparticles differing in size and shape. The SPR position varied from 450 nm to 730 nm depending on the particle shape and dimensions. Both experiments and simulation showed a red shift of the SPR for bigger nanoislands of the same shape. Losing the axial symmetry in nanoislands resulted in the resonance splitting, while their elongation led to an increase in the scattering of p-polarized light
    corecore