20 research outputs found

    Relative efficacy of three approaches to mitigate Crown‑of‑Thorns Starfish outbreaks on Australia’s Great Barrier Reef

    Get PDF
    Population outbreaks of Crown-of-Thorns Starfish (COTS; Acanthaster spp.) are a major contributor to loss of hard coral throughout the Indo-Pacific. On Australia’s Great Barrier Reef (GBR), management interventions have evolved over four COTS outbreaks to include: (1) manual COTS control, (2) Marine Protected Area (MPA) zoning, and, (3) water quality improvement. Here we evaluate the contribution of these three approaches to managing population outbreaks of COTS to minimize coral loss. Strategic manual control at sites reduced COTS numbers, including larger, more fecund and damaging individuals. Sustained reduction in COTS densities and improvements in hard coral cover at a site were achieved through repeated control visits. MPAs influenced initial COTS densities but only marginally influenced final hard coral cover following COTS control. Water quality improvement programs have achieved only marginal reductions in river nutrient loads delivered to the GBR and the study region. This, a subsequent COTS outbreak, and declining coral cover across the region suggest their contributions are negligible. These findings support manual control as the most direct, and only effective, means of reducing COTS densities and improving hard coral cover currently available at a site. We provide recommendations for improving control program effectiveness with application to supporting reef resilience across the Indo-Pacific

    Coral restoration – a systematic review of current methods, successes, failures and future directions

    Get PDF
    Coral reef ecosystems have suffered an unprecedented loss of habitat-forming hard corals in recent decades. While marine conservation has historically focused on passive habitat protection, demand for and interest in active restoration has been growing in recent decades. However, a disconnect between coral restoration practitioners, coral reef managers and scientists has resulted in a disjointed field where it is difficult to gain an overview of existing knowledge. To address this, we aimed to synthesise the available knowledge in a comprehensive global review of coral restoration methods, incorporating data from the peer-reviewed scientific literature, complemented with grey literature and through a survey of coral restoration practitioners. We found that coral restoration case studies are dominated by short-term projects, with 60% of all projects reporting less than 18 months of monitoring of the restored sites. Similarly, most projects are relatively small in spatial scale, with a median size of restored area of 100 m2. A diverse range of species are represented in the dataset, with 229 different species from 72 coral genera. Overall, coral restoration projects focused primarily on fast-growing branching corals (59% of studies), and report survival between 60 and 70%. To date, the relatively young field of coral restoration has been plagued by similar 'growing pains' as ecological restoration in other ecosystems. These include 1) a lack of clear and achievable objectives, 2) a lack of appropriate and standardised monitoring and reporting and, 3) poorly designed projects in relation to stated objectives. Mitigating these will be crucial to successfully scale up projects, and to retain public trust in restoration as a tool for resilience based management. Finally, while it is clear that practitioners have developed effective methods to successfully grow corals at small scales, it is critical not to view restoration as a replacement for meaningful action on climate change

    An Indo-Pacifc coral spawning database

    Get PDF
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    Data from: Macroalgae inhibits larval settlement and increases recruit mortality at Ningaloo Reef, Western Australia

    No full text
    Globally, many coral reefs are degraded and demonstrate reduced coral cover and increased macroalgal abundance. While negative correlations between macroalgae and coral recruitment have commonly been documented, the mechanisms by which macroalgae affects recruitment have received little attention. Here we examined the effect of macroalgae on larval settlement and the growth and survival of coral recruits, in a field experiment over nine months. Exclusion treatments were used to manipulate herbivory and macroalgal biomass, while settlement tiles measured coral settlement and survival. After nine months the volume of macroalgae was up to 40 times greater in the caged treatments than in controls and the settlement of coral larvae on the undersides of tiles within caged plots was 93% lower than in the uncaged treatments. The growth and survival of coral recruits was also severely reduced in the presence of macroalgae: survival was 79% lower in caged treatments and corals were up to 58% smaller with 75% fewer polyps. These data indicate that macroalgae has an additive effect on coral recruitment by reducing larval settlement and increasing recruit mortality. This research demonstrates that macroalgae can not only inhibit coral recruitment, but also potentially maintain dominance through a positive feedback system

    Is acoustic tracking appropriate for air-breathing marine animals? Dugongs as a case study

    No full text
    Marine animals face increased pressure through expanded shipping and recreational activities. Effective conservation and management of large species like marine mammals or sea turtles depend on knowledge of movement and habitat use. Previous studies have used data collected from either satellite or acoustic telemetry but rarely both. In this study, data from satellite and acoustic technologies were used to: determine the efficacy of satellite and acoustic telemetry to define dugong movement patterns; compare the benefits and limitations of each approach; examine the costs of each approach in relation to the amount and type of data provided; and relate telemetry data to the boundaries of a Go Slow area designed to protect dugongs and turtles from vessel strike within an urbanised coastal embayment (Moreton Bay, Queensland, Australia). Twenty-one dugongs were captured in seagrass habitats on the Eastern Banks of Moreton Bay in July–September 2012 and July 2013 and fitted with GPS and acoustic transmitters. Both satellite and acoustic telemetry produced reliable presence and movement data for individual dugongs. When the dugongs were within the range of the acoustic array, there was relatively good correspondence between the overall space use measures derived from GPS and acoustic transmitters, demonstrating that acoustic tracking is a potentially valuable and cost-effective tool for monitoring local dugong habitat use in environments equipped with acoustic receiver arrays. Acoustic technology may be particularly useful for species that establish home ranges with stable residency especially near large urban or port environs. However, the relative merits of the two technologies depend on the research question in the context of the species of interest, the location of the study and whether the study site has an established acoustic array

    Multi Year Observations Reveal Variability in Residence of a Tropical Demersal Fish, <i>Lethrinus nebulosus</i>: Implications for Spatial Management

    No full text
    <div><p>Off the Ningaloo coast of North West Western Australia, Spangled Emperor <i>Lethrinus nebulosus</i> are among the most highly targeted recreational fish species. The Ningaloo Reef Marine Park comprises an area of 4,566 km<sup>2</sup> of which 34% is protected from fishing by 18 no-take sanctuary zones ranging in size from 0.08–44.8 km<sup>2</sup>. To better understand Spangled Emperor movements and the adequacy of sanctuary zones within the Ningaloo Reef Marine Park for this species, 84 Spangled Emperor of a broad spectrum of maturity and sex were tagged using internal acoustic tags in a range of lagoon and reef slope habitats both inside and adjacent to the Mangrove Bay Sanctuary zone. Kernel Utilisation Distribution (KUD) was calculated for 39 resident individuals that were detected for more than 30 days. There was no relationship with fish size and movement or site fidelity. Average home range (95% KUD) for residents was 8.5±0.5 km<sup>2</sup> compared to average sanctuary zone size of 30 km<sup>2</sup>. Calculated home range was stable over time resulting in resident animals tagged inside the sanctuary zone spending ∼80% of time within the sanctuary boundaries. The number of fish remaining within the array of receivers declined steadily over time and after one year more than 60% of tagged fish had moved outside the sanctuary zone and also beyond the 28 km<sup>2</sup> array of receivers. Long term monitoring identified the importance of shifting home range and was essential for understanding overall residency within protected areas and also for identifying spawning related movements. This study indicates that despite exhibiting stable and small home ranges over periods of one to two years, more than half the population of spangled emperor move at scales greater than average sanctuary size within the Ningaloo Reef Marine Park.</p></div

    Kernel density of four individual <i>L. nebulosus</i>.

    No full text
    <p>Fixed kernel density of two <i>L. nebulosus</i> tagged on the reef slope (tag number 8171 (A), 8039 (B) and two tagged near coral outcrops in the lagoon 8030(C) and 8054 (D). The tagging location, receivers detecting the fish and all receivers within the array as well as the 50 and 95% kernel densities and fixed kernel density are shown. The boundary of the Mangrove Bay sanctuary is also shown.</p

    Mangrove Bay array range testing.

    No full text
    <p>Proportion of detections received by VR2 receivers at increasing distances from the test transmitter in the lagoon channel (filled circles, 4.0 m water depth) and at Mangrove Bay (white circles, 1.0 m water depth).</p

    Long term decline in the number of individual fish remaining in the Mangrove Bay array.

    No full text
    <p>The percentage of <i>L. nebulosus</i> tagged in the lagoon and on the reef slope that were detected within the array at 1–800 days after tagging. The spawning period coincides with the time periods 301–350, 351–400 and 601–700 days since tagging.</p

    Kernel overlap with sanctuary zone.

    No full text
    <p>The average (+ SE) area of the 95% kernel distribution that occurred inside and outside the Mangrove Bay Sanctuary Zone for fish tagged within (n = 16) and outside (n = 23) the Sanctuary Zone boundary. Open bars: average 95% Kernel area inside MPA; dark bars: average 95% kernel outside MPA.</p
    corecore