54 research outputs found

    Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems

    Get PDF
    A mathematical model is developed to analyse the hydrodynamics of a novel oscillating water column (OWC) in a hybrid wind-wave energy system. The OWC has a coaxial cylindrical structure in which the internal cylinder represents the mono-pile of an offshore wind turbine while the external cylinder has a skirt whose scope is to guide the wave energy flux inside the chamber. This layout is not casual, but consistent with the current approach to harnessing wave energy through hybrid systems. The device shape is rather complex and the boundary value problem is solved by applying the matching-method of eigenfunctions. Within the framework of a linearised theory, we model the turbine damping effects by assuming the airflow to be proportional to the air chamber pressure. Consequently, the velocity potential can be decomposed into radiation and diffraction problems. We study the effects of both skirt and internal radius dimensions on the power extraction efficiency for monochromatic and random waves. We show that the skirt has strong effects on the global behaviour, while the internal cylinder affects the values of the sloshing eigenfrequencies. Finally, we validate the analytical model with laboratory data and show a good agreement between analytical and experimental results

    Human neural crest cells display molecular and phenotypic hallmarks of stem cells

    Get PDF
    The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells

    Analytical and computational modelling for wave energy systems:the example of oscillating wave surge converters

    Get PDF
    This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainabiliy, survivability, and maintainability. And of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter (OWSC). New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters

    ISL1 Directly Regulates FGF10 Transcription during Human Cardiac Outflow Formation

    Get PDF
    The LIM homeodomain gene Islet-1 (ISL1) encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF) cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations

    A Wave-to-Wire model for the Hydraulic PTO of the SEAREV device

    No full text

    The SEAREV Wave Energy Converter

    No full text

    Distributed 3D audio rendering

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:4335.26205(98-11) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A numerical tool for the frequency domain simulation of large arrays of identical floating bodies in waves

    No full text
    The finite-depth interaction theory (IT) introduced by Kagemoto H. and Yue (1986) enables one to drastically speed up the computation of the added mass, damping and excitation force coefficients of a group (”farm”) of floating bodies when compared to direct calculations with standard widely available boundary element method (BEM) codes. An essential part of the theory is the calculation of two hydrodynamic operators, which characterize the way a body diffracts and radiates waves, known as Diffraction Transfer Matrix (DTM) and Radiation Characteristics (RC) respectively. Two different strategies to compute them for arbitrary geometries have been proposed in the literature (Goo, J.-S. and Yoshida, 1990; McNatt J. C. et al., 2015). The purpose of this study is to present the implementation of the former in the zeroth-order BEM solver NEMOH and to compare it with the latter by providing an insight into the DTM and the RC of a truncated vertical circular cylinder and a square box. A very good agreement between the hydrodynamic operators computed with both methodologies is obtained. In addition, hydrodynamic coefficients generated by means of the IT are verified against direct NEMOH calculations for two different array layouts. Results show the effect of hydrodynamic interactions as well as the importance of the evanescent modes truncation for closely spaced configurations
    corecore