7 research outputs found

    Cytomegalovirus reactivation in a critically ill patient: A case report

    No full text
    Abstract Background The aim of this case report is to discuss diagnostic workup and clinical management of cytomegalovirus reactivation in a critically ill immunocompetent pediatric patient. Case presentation A 2-year-old white boy who had no medical history presented with respiratory distress and fever. His Pediatric Risk of Mortality and Pediatric Logistic Organ Dysfunction scores were 20 and 11, respectively. Our preliminary diagnosis was multiple organ dysfunction secondary to sepsis. Antibiotic treatment was started; he was intubated and artificially ventilated. Norepinephrine infusion was started. Hemophagocytic lymphohistiocytosis was diagnosed because our patient had elevated levels of serum ferritin, bicytopenia, splenomegaly, fever (> 38.5 °C), and hemophagocytosis shown in a bone marrow sample. Therapeutic plasma exchange and intravenously administered high-dose corticosteroid for hemophagocytic lymphohistiocytosis and continuous renal replacement treatment for acute renal failure were initiated. Following 5-day high-dose corticosteroid administration, therapeutic plasma exchange, and continuous renal replacement treatment, his clinical status and kidney and liver functions improved, and vasoactive requirement and ferritin levels decreased. He was extubated on the seventh day. On the tenth day of hospitalization he had a seizure and was diagnosed as having septic encephalopathy. His immune functions were found to be normal. Although his medical condition improved continuously, he had left spontaneous pneumothorax on the 21st day of admission as a complication of necrotizing pneumonia. Since pneumothorax persisted, left upper lobectomy surgery was performed on the 30th day of hospitalization. In the pathological examination of the excised lung tissue, features of cytomegalovirus infection were observed. Ganciclovir treatment was started. Serological tests indicated that our patient had cytomegalovirus reactivation. Antiviral treatment was stopped after 17 days, when cytomegalovirus deoxyribonucleic acid (DNA) polymerase chain reaction results became negative. He fully recovered and was discharged on the 50th day of admission. Conclusions Cytomegalovirus reactivation in critically ill patients is a prevalent problem and shown to be associated with higher mortality and morbidity. In a case of serologic detection of cytomegalovirus reactivation without any clinical sign of infection, pre-emptive treatment could be considered with assessment of risks and benefits for each patient. Antiviral therapy is highly recommended for patients who have risk factors identified

    Recovery strategies for linear replication

    No full text
    Replicated systems are commonly used to provide highly available applications. In last years, these systems have been mostly based on the use of atomic broadcast protocols, and a wide range of solutions have been published. The use of these atomic broadcast-based protocols also has aided to develop recovery protocols providing fault tolerance to replicated systems. However, this research has been traditionally oriented to replication systems based on constant interaction for ensuring 1-copy-serializability. This paper presents a general strategy for recovery protocols based on linear interaction as well as providing other isolation levels as snapshot isolation. Moreover, some conclusions of this work can be used to review recovery protocols based on constant interaction

    Distributed hash sketches: scalable, efficient, and accurate cardinality estimation for distributed multisets

    No full text
    Counting items in a distributed system, and estimating the cardinality of multisets in particular, is important for a large variety of applications and a fundamental building block for emerging Internet-scale information systems. Examples of such applications range from optimizing query access plans in peer-to-peer data sharing, to computing the significance (rank/score) of data items in distributed information retrieval. The general formal problem addressed in this article is computing the network-wide distinct number of items with some property (e.g., distinct files with file name containing “spiderman”) where each node in the network holds an arbitrary subset, possibly overlapping the subsets of other nodes. The key requirements that a viable approach must satisfy are: (1) scalability towards very large network size, (2) efficiency regarding messaging overhead, (3) load balance of storage and access, (4) accuracy of the cardinality estimation, and (5) simplicity and easy integration in applications. This article contributes the DHS (Distributed Hash Sketches) method for this problem setting: a distributed, scalable, efficient, and accurate multiset cardinality estimator. DHS is based on hash sketches for probabilistic counting, but distributes the bits of each counter across network nodes in a judicious manner based on principles of Distributed Hash Tables, paying careful attention to fast access and aggregation as well as update costs. The article discusses various design choices, exhibiting tunable trade-offs between estimation accuracy, hop-count efficiency, and load distribution fairness. We further contribute a full-fledged, publicly available, open-source implementation of all our methods, and a comprehensive experimental evaluation for various settings
    corecore