20 research outputs found

    Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review

    Get PDF
    The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI) and carotid atherosclerosis is of paramount importance, as these cardiovascular diseases may cause medical complications and large number of death. Ultrasound (US) is a widely used imaging modality, as it captures moving images and image features correlate well with results obtained from other imaging methods. Furthermore, US does not use ionizing radiation and it is economical when compared to other imaging modalities. However, reading US images takes time and the relationship between image and tissue composition is complex. Therefore, the diagnostic accuracy depends on both time taken to read the images and experience of the screening practitioner. Computer support tools can reduce the inter-operator variability with lower subject specific expertise, when appropriate processing methods are used. In the current review, we analysed automatic detection methods for the diagnosis of CAD, MI and carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS). We found that IVUS is more often used than thoracic US for CAD. But for MI and carotid atherosclerosis IVUS is still in the experimental stage. Furthermore, thoracic US is more often used than IVUS for computer aided diagnosis systems

    CFD modeling of the building integrated with a novel design of a one-sided wind-catcher with water spray: Focus on thermal comfort

    No full text
    The rising energy demand for buildings has enhanced public awareness of sustainable energy sources and technologies. In particular, natural ventilation systems such as wind-catchers have attracted considerable new attention. A new wind-catcher design with single-stage direct-air evaporative cooling was proposed for indoor air conditioning. An Eulerian-Lagrangian approach employing the Realizable k-ε model was utilized to conduct the CFD simulations. Furthermore, the effects of inclining the bottom surface of the wind-catcher and installing a baffle across the flow path on the air temperature drop, water mass fraction, and air velocity distribution were studied. The inclined bottom surface led to more flow uniformity in the room compared to the conventional geometry. The baffled wind-catcher with β = 0, 30, 45, and 60° and unbaffled wind-catcher showed different flow patterns and thermal comforts. A methodology for evaluating the thermal comfort performance of evaporative cooling systems integrated into natural or passive cooling devices was also proposed based on the generated CFD results. The baffled wind-catcher with β = 60° combined with an evaporative cooling system significantly reduced the air temperature inside the building up to 17.4 °C and improved the occupants’ thermal comfort. The most suitable design for thermal comfort was also determined.</p

    CFD modeling of the building integrated with a novel design of a one-sided wind-catcher with water spray: Focus on thermal comfort

    No full text
    The rising energy demand for buildings has enhanced public awareness of sustainable energy sources and technologies. In particular, natural ventilation systems such as wind-catchers have attracted considerable new attention. A new wind-catcher design with single-stage direct-air evaporative cooling was proposed for indoor air conditioning. An Eulerian-Lagrangian approach employing the Realizable k-ε model was utilized to conduct the CFD simulations. Furthermore, the effects of inclining the bottom surface of the wind-catcher and installing a baffle across the flow path on the air temperature drop, water mass fraction, and air velocity distribution were studied. The inclined bottom surface led to more flow uniformity in the room compared to the conventional geometry. The baffled wind-catcher with β = 0, 30, 45, and 60° and unbaffled wind-catcher showed different flow patterns and thermal comforts. A methodology for evaluating the thermal comfort performance of evaporative cooling systems integrated into natural or passive cooling devices was also proposed based on the generated CFD results. The baffled wind-catcher with β = 60° combined with an evaporative cooling system significantly reduced the air temperature inside the building up to 17.4 °C and improved the occupants’ thermal comfort. The most suitable design for thermal comfort was also determined.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Process and Energ

    On the Impact of Fast Failure Detectors on Real-Time Fault-Tolerant Systems

    No full text
    Abstract. We investigate whether fast failure detectors can be useful — and if so by how much — in the design of real-time fault-tolerant systems. Specifically, we show how fast failure detectors can speed up consensus and fault-tolerant broadcasts, by providing fast algorithms and deriving some matching lower bounds, for synchronous systems with crashes. These results show that a fast failure detector service (implemented using specialized hardware or expedited message delivery) can be an important tool in the design of real-time mission-critical systems.
    corecore