256 research outputs found

    A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro

    Get PDF
    Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Psychological determinants of whole-body endurance performance

    Get PDF
    Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research. Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research. Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants. Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance. Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Identification of a hypoxia-regulated miRNA signature in bladder cancer and a role for miR-145 in hypoxia-dependent apoptosis

    Get PDF
    Background: Hypoxia leads to the stabilisation of the hypoxia-inducible factor (HIF) transcription factor that drives the expression of target genes including microRNAs (miRNAs). MicroRNAs are known to regulate many genes involved in tumourigenesis. The aim of this study was to identify hypoxia-regulated miRNAs (HRMs) in bladder cancer and investigate their functional significance. Methods: Bladder cancer cell lines were exposed to normoxic and hypoxic conditions and interrogated for the expression of 384 miRNAs by qPCR. Functional studies were carried out using siRNA-mediated gene knockdown and chromatin immunoprecipitations. Apoptosis was quantified by annexin V staining and flow cytometry. Results: The HRM signature for NMI bladder cancer lines includes miR-210, miR-193b, miR-145, miR-125-3p, miR-708 and miR-517a. The most hypoxia-upregulated miRNA was miR-145. The miR-145 was a direct target of HIF-1a and two hypoxia response elements were identified within the promoter region of the gene. Finally, the hypoxic upregulation of miR-145 contributed to increased apoptosis in RT4 cells. Conclusions: We have demonstrated the hypoxic regulation of a number of miRNAs in bladder cancer. We have shown that miR- 145 is a novel, robust and direct HIF target gene that in turn leads to increased cell death in NMI bladder cancer cell lines

    Lack of correlation between Ki-67 labelling index and tumor size of anterior pituitary adenomas

    Get PDF
    AIMS AND BACKGROUND: The Ki-67 is a nuclear antigen detected by the monoclonal antibody MIB-1 and its Labeling Index (LI) is considered a marker of normal and abnormal cell proliferation. Pituitary adenomas are generally well differentiated neoplasms, even if in about one third of cases they are invasive of surrounding tissues. The aim of this study is to evaluate the correlation between Ki-67 labelling index and tumor size of pituitary adenomas extimated by means CT and MRI and confirmed at operation. METHODS: Using the monoclonal antibody MIB-1, we evaluated the expression of Ki-67 in 121 anterior pituitary adenomas consecutively operated on in a 48-month period. RESULTS: In relation to neuroradiological (CT and MRI) and surgically verified tumor size, we identified 24 microadenomas, 27 intrasellar macroadenomas, 34 intra-suprasellar macroadenomas, and 36 intra-supra-parasellar macroadenomas. The adenomas were non-infiltrating (76 cases) and infiltrating (45 cases) adenomas. The wall of the cavernous sinus (CS) was infiltrated in 18 cases. Forty-eight adenomas were non-functioning and 73 functioning. The overall mean ± SD Ki-67 LI was 2.72 ± 2.49% (median 1.6). It was 2.59 ± 1.81 in microadenomas, 2.63 ± 3.45 in intrasellar macroadenomas, 1.91 ± 2.11 in intra-suprasellar macroadenomas, and 3.29 ± 5.45 in intra-supra-parasellar macroadenomas (p = 0.27). It was 3.73 ± 5.13% in infiltrating and 2.03 ± 2.41% in non-infiltrating adenomas (p = 0.02), and 5.61 ± 7.19% in CS-infiltrating versus 2.09 ± 2.37% in CS-non-infiltrating adenomas (p = 0.0005). CONCLUSIONS: Our preliminary results seem to exclude significative correlations between Ki-67 LI and tumor size of anterior pituitary adenomas, even if this index can be considered a useful marker in the determination of the infiltrative behaviour of these tumors

    Prodrug converting enzyme gene delivery by L. monocytogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Listeria monocytogenes </it>is a highly versatile bacterial carrier system for introducing protein, DNA and RNA into mammalian cells. The delivery of tumor antigens with the help of this carrier into tumor-bearing animals has been successfully carried out previously and it was recently reported that <it>L. monocytogenes </it>is able to colonize and replicate within solid tumors after local or even systemic injection.</p> <p>Methods</p> <p>Here we report on the delivery of two prodrug converting enzymes, purine-deoxynucleoside phosphorylase (PNP) and a fusion protein consisting of yeast cytosine deaminase and uracil phosphoribosyl transferase (FCU1) into cancer cells in culture by <it>L. monocytogenes</it>. Transfer of the prodrug converting enzymes was achieved by bacterium mediated transfer of eukaryotic expression plasmids or by secretion of the proteins directly into the host cell cytosol by the infecting bacteria.</p> <p>Results</p> <p>The results indicate that conversion of appropriate prodrugs to toxic drugs in the cancer cells occured after both procedures although <it>L. monocytogenes</it>-mediated bactofection proved to be more efficient than enzyme secretion 4T1, B16 and COS-1 tumor cells. Exchanging the constitutively P<sub>CMV</sub>-promoter with the melanoma specific P<sub>4xTETP</sub>-promoter resulted in melanoma cell-specific expression of the prodrug converting enzymes but reduced the efficiencies.</p> <p>Conclusion</p> <p>These experiments open the way for bacterium mediated tumor specific activation of prodrugs in live animals with tumors.</p

    Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells

    Get PDF
    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and thus ultimately affect information processing and cognition

    Spike firing and IPSPs in layer V pyramidal neurons during beta oscillations in rat primary motor cortex (M1) in vitro

    Get PDF
    Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation
    • …
    corecore