185 research outputs found

    Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community

    Get PDF
    Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a “neutral-like” pattern maintained by niche-differentiation

    Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence

    Get PDF
    The present study demonstrates that tDCS can alter WM performance by modulating the underlying neural oscillations. This result can be considered an important step towards a better understanding of the mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link

    Search for the highly suppressed decays B- -> K+Ď€-Ď€- and B- -> K-K-Ď€+

    Get PDF
    We report a search for the decays B- -> K+pi(-)pi(-) and B- -> K-K-pi(+), which are highly suppressed in the standard model. Using a sample of (467 +/- 5) x 10(6) B (B) over bar pairs collected with the BABAR detector, we do not see any evidence of these decays and determine 90% confidence level upper limits of B(B- -> K+pi(-)pi(-)) and K-K-pi(+)) and < 1.6 x 10(-7) on the corresponding branching fractions, including systematic uncertainties

    Artefatos biolĂłgicos no EEG quantitativo Biologic artifacts in quantitative EEG

    No full text
    Estudamos, em 10 indivíduos adultos normais, o comportamento de cinco artefatos biológicos do eletrencefalograma (EEG): piscamento palpebral, fechamento forçado dos olhos, fechamento forçado da mandíbula, movimentos de língua e varredura horizontal dos olhos - tanto por análise visual como espectral - tanto com objetivo de verificar como esses artefatos são visualizados quando apresentados em mapas de potência da amplitude espectral. Observamos que os potenciais do espectro respeitavam a mesma disposição topográfica que os encontrados à análise visual do traçado. A análise visual do EEG é superior à quantitativa, para o reconhecimento de artefatos, porque preserva a visualização morfológica dos grafoelementos que deve ser feita obrigatoriamente no domínio do tempo, pois a sua correta identificação se perde no domínio da frequência. Devido a grande dificuldade de excluirmos totalmente os artefatos durante o registro do EEG e, por conseguinte, serem incluídos na análise quantitativa, é fundamental conhecermos como estes potenciais serão representados nos mapas quantitativos, para podermos identifica-los, evitando confundí-los com atividades patológicas do EEG.<br>We studied the influence of five biologic artifacts sources on quantitative EEG (blinking, forced eyes closure, forced jaw closure, tongue movements and pursuit eyes movements) through both visual and spectral analysis, with the purpose of verifying how do these artifacts can be seen in a cartographic way. We found that the spectrum’s potencials showed the same topographic display that was found through visual analysis. Visual analysis was superior than the quantitative evaluation to recognise the artifacts, as the former preserved the morphological display of the paroxisms. However it is important know how do the potencials are represented in quantitative maps, so that they can be identified as artifacts and not as pathologic EEG activity
    • …
    corecore