506 research outputs found

    The long rapid decay phase of the extended emission from the short GRB 080503

    Get PDF
    The definitive version of this article is available at: http://www3.interscience.wiley.com/ Copyright Royal Astronomical SocietyGRB 080503 was classified as a short gamma-ray burst (GRB) with extended emission. The origin of such extended emission (found in about a quarter of Swift short GRBs) is still unclear and may provide some clues to the identity of the elusive progenitors of short GRBs. The extended emission from GRB 080503 is followed by a rapid decay phase (RDP) that is detected over an unusually large dynamical range (one decade in time and ∼ 3.5 decades in flux), making it ideal for studying the nature of the extended emission from short GRBs. We model the broad envelope of extended emission and the subsequent RDP using a physical model for the prompt GRB emission and its high latitude emission tail, in which the prompt emission (and its tail) is the sum of its individual pulses (and their tails). For GRB 080503, a single pulse fit is found to be unacceptable, even when ignoring short time-scale variability. The RDP displays very strong spectral evolution and shows some evidence for the presence of two spectral components with different temporal behaviour, likely arising from distinct physical regions. A two pulse fit (a first pulse accounting for the gamma-ray extended emission and decay phase, and the second pulse accounting mostly for the X-ray decay phase) provides a much better (though not perfect) fit to the data. The shallow gamma-ray and steep hard X-ray decays are hard to account for simultaneously, and require the second pulse to deviate from the simplest version of the model we use. Therefore, while high latitude emission is a viable explanation for the RDP in GRB 080503, it does not pass our tests with flying colours, and it is quite plausible that another mechanism is at work here. Finally, we note that the properties of the RDP following the extended emission of short GRBs (keeping in mind the very small number of well-studied cases so far) appear to have different properties than that following the prompt emission of long GRBs. However, a larger sample of short GRBs with extended emission is required before any strong conclusion can be drawn.Peer reviewe

    Updated opacities from the opacity project

    Get PDF
    Using the code autostructure, extensive calculations of inner-shell atomic data have been made for the chemical elements He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni. The results are used to obtain updated opacities from the Opacity Project (OP). A number of other improvements on earlier work have also been included. Rosseland-mean opacities from the OP are compared with those from OPAL. Differences of 5-10 per cent occur. The OP gives the 'Z-bump', at log(T) 5.2, to be shifted to slightly higher temperatures. The opacities from the OP, as functions of temperature and density, are smoother than those from OPAL. The accuracy of the integrations used to obtain mean opacities can depend on the frequency mesh used. Tests involving variation of the numbers of frequency points show that for typical chemical mixtures the OP integrations are numerically correct to within 0.1 per cent. The accuracy of the interpolations used to obtain mean opacities for any required values of temperature and density depends on the temperature-density meshes used. Extensive tests show that, for all cases of practical interest, the OP interpolations give results correct to better than 1 per cent. Prior to a number of recent investigations which have indicated a need for downward revisions in the solar abundances of oxygen and other elements, there was good agreement between properties of the Sun deduced from helioseismology and from stellar evolution models calculated using OPAL opacities. The revisions destroy that agreement. In a recent paper, Bahcall et al. argue that the agreement would be restored if opacities for the regions of the Sun with 2 × 106T 5 × 106 K (0.7-0.4 R) were larger than those given by OPAL by about 10 per cent. In the region concerned, the present results from the OP do not differ from those of OPAL by more than 2.5 per cent

    Observational Constraints on Cosmological Models with the Updated Long Gamma-Ray Bursts

    Full text link
    In the present work, by the help of the newly released Union2 compilation which consists of 557 Type Ia supernovae (SNIa), we calibrate 109 long Gamma-Ray Bursts (GRBs) with the well-known Amati relation, using the cosmology-independent calibration method proposed by Liang {\it et al.}. We have obtained 59 calibrated high-redshift GRBs which can be used to constrain cosmological models without the circularity problem (we call them ``Hymnium'' GRBs sample for convenience). Then, we consider the joint constraints on 7 cosmological models from the latest observational data, namely, the combination of 557 Union2 SNIa dataset, 59 calibrated Hymnium GRBs dataset (obtained in this work), the shift parameter RR from the WMAP 7-year data, and the distance parameter AA of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies. We also briefly consider the comparison of these 7 cosmological models.Comment: 19 pages, 3 tables, 10 figures, revtex4; v2: accepted for publication in JCAP; v3: published versio

    Cosmological Constraints from calibrated Yonetoku and Amati relation implies Fundamental plane of Gamma-ray bursts

    Full text link
    We consider two empirical relations using data only from the prompt emission of Gamma-Ray Bursts (GRBs), peak energy (EpE_p) - peak luminosity (LpL_p) relation (so called Yonetoku relation) and EpE_p-isotropic energy (EisoE_{\rm iso}) relation (so called Amati relation). We first suggest the independence of the two relations although they have been considered similar and dependent. From this viewpoint, we compare constraints on cosmological parameters, Ωm\Omega_m and ΩΛ\Omega_{\Lambda}, from the Yonetoku and Amati relations calibrated by low-redshift GRBs with z<1.8z < 1.8. We found that they are different in 1-σ\sigma level, although they are still consistent in 2-σ\sigma level. This and the fact that both Amati and Yonetoku relations have systematic errors larger than statistical errors suggest the existence of a hidden parameter of GRBs. We introduce the luminosity time TLT_L defined by TLEiso/LpT_L\equiv E_{\rm iso}/L_p as a hidden parameter to obtain a generalized Yonetoku relation as (Lp/1052ergs1)=103.88±0.09(Ep/keV)1.84±0.04(TL/s)0.34±0.04(L_p/{10^{52} \rm{erg s^{-1}}}) = 10^{-3.88\pm0.09}(E_p/{\rm{keV}})^{1.84\pm0.04} (T_L/{\rm{s}})^{-0.34\pm0.04}. The new relation has much smaller systematic error, 30%, and can be regarded as "Fundamental plane" of GRBs. We show a possible radiation model for this new relation. Finally we apply the new relation for high-redshift GRBs with 1.8<z<5.61.8 < z < 5.6 to obtain (Ωm,ΩΛ)=(0.160.06+0.04,1.200.09+0.03)(\Omega_m,\Omega_{\Lambda}) = (0.16^{+0.04}_{-0.06},1.20^{+0.03}_{-0.09}), which is consistent with the concordance cosmological model within 2-σ\sigma level.Comment: 5 pages, 6 figures, published in JCA

    Effective theory of the Delta(1232) in Compton scattering off the nucleon

    Full text link
    We formulate a new power-counting scheme for a chiral effective field theory of nucleons, pions, and Deltas. This extends chiral perturbation theory into the Delta-resonance region. We calculate nucleon Compton scattering up to next-to-leading order in this theory. The resultant description of existing γ\gammap cross section data is very good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent polarizabilities αp\alpha_p and βp\beta_p.Comment: 29 pp, 9 figs. Minor revisions. To be published in PR

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

    Get PDF
    We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables, final version to appear in Physical Review

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe

    Measurement of tau polarization in W->taunu decays with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    In this paper, a measurement of tau polarization in W->taunu decays is presented. It is measured from the energies of the decay products in hadronic tau decays with a single final state charged particle. The data, corresponding to an integrated luminosity of 24 pb^-1, were collected by the ATLAS experiment at the Large Hadron Collider in 2010. The measured value of the tau polarization is Ptau = -1.06 +/- 0.04 (stat) + 0.05 (syst) - 0.07 (syst), in agreement with the Standard Model prediction, and is consistent with a physically allowed 95% CL interval [-1,-0.91]. Measurements of tau polarization have not previously been made at hadron colliders.Comment: 10 pages plus author list (25 pages total), 4 figures, 4 tables, revised author list, matches published EPJC versio
    corecore