189 research outputs found
Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake
The variation of fractal dimension and entropy during a damage evolution
process, especially approaching critical failure, has been recently
investigated. A sudden drop of fractal dimension has been proposed as a
quantitative indicator of damage localization or a likely precursor of an
impending catastrophic failure. In this contribution, electromagnetic emissions
recorded prior to significant earthquake are analysed to investigate whether
they also present such sudden fractal dimension and entropy drops as the main
catastrophic event is approaching. The pre-earthquake electromagnetic time
series analysis results reveal a good agreement to the theoretically expected
ones indicating that the critical fracture is approaching
Molecular motors robustly drive active gels to a critically connected state
Living systems often exhibit internal driving: active, molecular processes
drive nonequilibrium phenomena such as metabolism or migration. Active gels
constitute a fascinating class of internally driven matter, where molecular
motors exert localized stresses inside polymer networks. There is evidence that
network crosslinking is required to allow motors to induce macroscopic
contraction. Yet a quantitative understanding of how network connectivity
enables contraction is lacking. Here we show experimentally that myosin motors
contract crosslinked actin polymer networks to clusters with a scale-free size
distribution. This critical behavior occurs over an unexpectedly broad range of
crosslink concentrations. To understand this robustness, we develop a
quantitative model of contractile networks that takes into account network
restructuring: motors reduce connectivity by forcing crosslinks to unbind.
Paradoxically, to coordinate global contractions, motor activity should be low.
Otherwise, motors drive initially well-connected networks to a critical state
where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages,
  8 figure
Energy allocation and behaviour in the growing broiler chicken
Broiler chickens are increasingly at the forefront of global meat production but the consequences of fast growth and selection for an increase in body mass on bird health are an ongoing concern for industry and consumers. To better understand the implications of selection we evaluated energetics and behaviour over the 6-week hatch-to-slaughter developmental period in a commercial broiler. The effect of posture on resting metabolic rate becomes increasingly significant as broilers grow, as standing became more energetically expensive than sitting. The proportion of overall metabolic rate accounted for by locomotor behaviour decreased over development, corresponding to declining activity levels, mean and peak walking speeds. These data are consistent with the inference that broilers allocate energy to activity within a constrained metabolic budget and that there is a reducing metabolic scope for exercise throughout their development. Comparison with similarly sized galliforms reveals that locomotion is relatively energetically expensive in broilers
Conservation genetics of the annual hemiparasitic plant Melampyrum sylvaticum (Orobanchaceae) in the UK and Scandinavia
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (F’ST = 0.892) and significantly higher amongst UK populations (F’ST = 0.949) than Scandinavian populations (F’ST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK
Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging
<p>Abstract</p> <p>Background</p> <p>Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS). To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM) and magnetization transfer imaging (MTI) which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity.</p> <p>Methods</p> <p>Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2.</p> <p>Results</p> <p>Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally.</p> <p>Conclusion</p> <p>Our MRI <it>in vivo </it>neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function.</p
Short-Lived Trace Gases in the Surface Ocean and the Atmosphere
The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
Assessment of explanatory models of mental illness: effects of patient and interviewer characteristics
Background: Explanatory models (EMs) refer to patients’ causal attributions of illness and have been shown to affect treatment preference and outcome. Reliable and valid assessment of EMs may be hindered by interviewer and respondent disparities on certain demographic characteristics, such as ethnicity. The present study examined (a) whether ethnic minority patients reported different EMs to ethnically similar interviewers in comparison with those with a different ethnicity, and (b) whether this effect was related to respondents’ social desirability, the perceived rapport with the interviewer and level of uncertainty toward their EMs. Methods: A total of 55 patients of Turkish and Moroccan origins with mood and anxiety disorders were randomly assigned to ethnically similar or dissimilar interviewers. EMs were assessed, using a semi-structured interview, across 11 different categories of causes. Results: Participants who were interviewed by an ethnically similar interviewer perceived interpersonal, victimization and religious/mystical causes as more important, whereas interviews by ethnically dissimilar interviewers generated higher scores on medical causes. These effects were not mediated by the perceived rapport with the interviewer, and social desirability had a modest impact on the results. Higher uncertainty among participants toward medical and religious/mystical causes seemed to be associated with greater adjustment in the report of these EMs. Conclusion: The findings have significant implications for interviewer selection in epidemiological research and clinical practice
Variation in rates of spontaneous male production within the nematode species Pristionchus pacificus supports an adaptive role for males and outcrossing
Background: The nematode species Pristionchus pacificus has an androdioecious mating system in which populations consist of self-fertilizing hermaphrodites and relatively few males. The prevalence of males in such a system is likely to depend on the relative pros and cons of outcrossing. While outcrossing generates novel allelic combinations and can therefore increase adaptive potential, it may also disrupt the potentially beneficial consequences of repeated generations of selfing. These include purging of deleterious alleles, inheritance of co-adapted allele complexes, improved hermaphrodite fitness and increased population growth. Here we use experimental and population genetic approaches to test hypotheses relating to male production and outcrossing in laboratory and natural populations of P. pacificus sampled from the volcanic island of La Reunion. Results: We find a significant interaction between sampling locality and temperature treatment influencing rates of spontaneous male production in the laboratory. While strains isolated at higher altitude, cooler localities produce a higher proportion of male offspring at 25(circle)C relative to 20 or 15(circle)C, the reverse pattern is seen in strains isolated from warmer, low altitude localities. Linkage disequilibrium extends across long physical distances, but fails to approach levels reported for the partially selfing nematode species Caenorhabditis elegans. Finally, we find evidence for admixture between divergent genetic lineages. Conclusions: Elevated rates of laboratory male generation appear to occur under environmental conditions which differ from those experienced by populations in nature. Such elevated male generation may result in higher outcrossing rates, hence driving increased effective recombination and the creation of potentially adaptive novel allelic combinations. Patterns of linkage disequilibrium decay support selfing as the predominant reproductive strategy in P. pacificus. Finally, despite the potential for outcrossing depression, our results suggest admixture has occurred between distinct genetic lineages since their independent colonization of the island, suggesting outcrossing depression may not be uniform in this species
Selecting appropriate bedding to reduce locomotion problems in broilers
Two experiments were carried out at the Poultry Sector of the School of Agrarian Sciences of the Federal University of Grande Dourados to evaluate the incidence of leg problems in broilers reared on two distinct types of bedding material: rice husks or wood shavings, both new and reused. In both trials, a randomized experimental design was applied in factorial arrangement (2 x 2 x 2) using two genetic strains (Cobb® or Ross®); two sexes (male or female), and two litter materials (rice husks or wood shavings). In each trial 1080 one day pullets were reared equally divided in the treatments. The birds were placed in 4.5 m² boxes at a density of 10 birds m-2. All birds were fed diets with equal nutritional density, and water was offered ad libitum. Feeds were divided in three phases: starter diet (1 - 21 days), grower diet (22 - 35 days), and finisher diet (36 - 45 days). On day 45, fifty birds were randomly selected in each experiment to evaluate flock leg problems. The following parameters were analyzed: gait score, incidence of valgus and varus disorder, footpad dermatitis, femoral degeneration, tibial dyschondroplasia, and spondylolisthesis. Ambient temperature during rearing and litter caking and moisture content were recorded in four boxes per treatment. The analytical hierarchy process was used to organize the data into specific criteria. Several criteria, related to the attributes that were determinant according to the statistical analysis, were chosen in order to provide the best input to the process. Results indicated that new wood-shavings bedding was the most appropriate bedding to prevent locomotion problems, followed by new rice husks, reused wood shavings, and reused rice husks. However, when leg problems were associated to sex and genetic strain, male Ross birds strain presented less problems when reared on new rice husks, followed by new wood shaving
- …
