168 research outputs found

    Differences in smoking associated DNA methylation patterns in South Asians and Europeans

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Background DNA methylation is strongly associated with smoking status at multiple sites across the genome. Studies have largely been restricted to European origin individuals yet the greatest increase in smoking is occurring in low income countries, such as the Indian subcontinent. We determined whether there are differences between South Asians and Europeans in smoking related loci, and if a smoking score, combining all smoking related DNA methylation scores, could differentiate smokers from non-smokers. Results Illumina HM450k BeadChip arrays were performed on 192 samples from the Southall And Brent REvisited (SABRE) cohort. Differential methylation in smokers was identified in 29 individual CpG sites at 18 unique loci. Interaction between smoking status and ethnic group was identified at the AHRR locus. Ethnic differences in DNA methylation were identified in non-smokers at two further loci, 6p21.33 and GNG12. With the exception of GFI1 and MYO1G these differences were largely unaffected by adjustment for cell composition. A smoking score based on methylation profile was constructed. Current smokers were identified with 100% sensitivity and 97% specificity in Europeans and with 80% sensitivity and 95% specificity in South Asians. Conclusions Differences in ethnic groups were identified in both single CpG sites and combined smoking score. The smoking score is a valuable tool for identification of true current smoking behaviour. Explanations for ethnic differences in DNA methylation in association with smoking may provide valuable clues to disease pathways.Wellcome Trust Enhancement grantMedical Research CouncilDiabetes UKthe British Heart Foundatio

    Maternal cadmium, iron and zinc levels, DNA methylation and birth weight

    Get PDF
    Background Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationships remain limited. Methods We examined whether maternal Cd levels during early pregnancy were associated with offspring DNA methylation at regulatory sequences of genomically imprinted genes and weight at birth, and whether Fe and Zn altered these associations. Cd, Fe and Zn were measured in maternal blood of 319 women ≤12 weeks gestation. Offspring umbilical cord blood leukocyte DNA methylation at regulatory differentially methylated regions (DMRs) of 8 imprinted genes was measured using bisulfite pyrosequencing. Regression models were used to examine the relationships among Cd, Fe, Zn, and DMR methylation and birth weight. Results Elevated maternal blood Cd levels were associated with lower birth weight (p = 0.03). Higher maternal blood Cd levels were also associated with lower offspring methylation at the PEG3 DMR in females (β = 0.55, se = 0.17, p = 0.05), and at the MEG3 DMR in males (β = 0.72, se = 0.3, p = 0.08), however the latter association was not statistically significant. Associations between Cd and PEG3 and PLAGL1 DNA methylation were stronger in infants born to women with low concentrations of Fe (p < 0.05). Conclusions Our data suggest the association between pre-natal Cd and offspring DNA methylation at regulatory sequences of imprinted genes may be sex- and gene-specific. Essential metals such as Zn may mitigate DNA methylation response to Cd exposure. Larger studies are required

    On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation

    Get PDF
    Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99¿100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains

    Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi

    Get PDF
    Depression affects 10-15% of pregnant women and has been associated with preterm delivery and later developmental, behavioural and learning disabilities. We tested the hypothesis that maternal depression is associated with DNA methylation alterations in maternal T lymphocytes, neonatal cord blood T lymphocytes and adult offspring hippocampi. Genome-wide DNA methylation of CD3+ T lymphocytes isolated from 38 antepartum maternal and 44 neonatal cord blood samples were analyzed using Illumina Methylation 450 K microarrays. Previously obtained methylation data sets using methylated DNA immunoprecipitation and array-hybridization of 62 postmortem hippocampal samples of adult males were re-analyzed to test associations with history of maternal depression. We found 145 (false discovery rate (FDR) q<0.05) and 2520 (FDR q<0.1) differentially methylated CG-sites in cord blood T lymphocytes of neonates from the maternal depression group as compared with the control group. However, no significant DNA methylation differences were detected in the antepartum maternal T lymphocytes of our preliminary data set. We also detected 294 differentially methylated probes (FDR q<0.1) in hippocampal samples associated with history of maternal depression. We observed a significant overlap (P=0.002) of 33 genes with changes in DNA methylation in T lymphocytes of neonates and brains of adult offspring. Many of these genes are involved in immune system functions. Our results show that DNA methylation changes in offspring associated with maternal depression are detectable at birth in the immune system and persist to adulthood in the brain. This is consistent with the hypothesis that system-wide epigenetic changes are involved in life-long responses to maternal depression in the offspring. © 2015 Translational Psychiatry

    The ISO long-wavelength spectrometer

    Get PDF
    The Long-Wavelength Spectrometer (LWS) is one of two complementary spectrometers aboard the European Space Agency's Infrared Space Observatory (ISO) (Kessler et al., 1996A&A...315L..49D). It operates over the wavelength range 43-196.9μm at either medium (about 150 to 200) or high (6800 to 9700) spectral resolving power. This Letter describes the instrument and its modes of operation; a companion paper (Swinyard et al, 1996) describes its performance and calibration
    corecore