318 research outputs found
Galactic Halos of Fluid Dark Matter
Dwarf spiral galaxies - and in particular the prototypical DDO 154 - are
known to be completely dominated by an unseen component. The putative
neutralinos - so far the favored explanation for the astronomical dark matter -
fail to reproduce the well measured rotation curves of those systems because
these species tend to form a central cusp whose presence is not supported by
observation. We have considered here a self-coupled charged scalar field as an
alternative to neutralinos and investigated whether a Bose condensate of that
field could account for the dark matter inside DDO 154 and more generally
inside dwarf spirals. The size of the condensate turns out to be precisely
determined by the scalar mass m and self-coupling lambda of the field. We find
actually that for m^4 / lambda = 50 - 75 eV^4, the agreement with the
measurements of the circular speed of DDO 154 is impressive whereas it lessens
for larger systems. The cosmological behavior of the field is also found to be
consistent - yet marginally - with the limits set by BBN on the effective
number of neutrino families. We conclude that classical configurations of a
scalar and self-coupled field provide a possible solution to the astronomical
dark matter problem and we suggest further directions of research.Comment: 20 pages, 7 figures; one reference added, version to be published in
PR
Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development
Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life
Form factors in lattice QCD
Lattice simulations of QCD have produced precise estimates for the masses of
the lowest-lying hadrons which show excellent agreement with experiment. By
contrast, lattice results for the vector and axial vector form factors of the
nucleon show significant deviations from their experimental determination. We
present results from our ongoing project to compute a variety of form factors
with control over all systematic uncertainties. In the case of the pion
electromagnetic form factor we employ partially twisted boundary conditions to
extract the pion charge radius directly from the linear slope of the form
factor near vanishing momentum transfer. In the nucleon sector we focus
specifically on the possible contamination from contributions of higher excited
states. We argue that summed correlation functions offer the possibility of
eliminating this source of systematic error. As an illustration of the method
we discuss our results for the axial charge, gA, of the nucleon.Comment: 16 pages, 11 figures, presented at Conclusive Symposium, CRC443,
"Many-body structure of strongly interacting systems", 23-25 Feb 2011, Mainz,
German
Serologic Reactivity Reflects Clinical Expression of Ulcerative Colitis in Children
Background In contrast to pediatric Crohn's disease (CD), little is known in pediatric ulcerative colitis (UC) about the relationship between disease phenotype and serologic reactivity to microbial and other antigens. Aim The aim of this study was to examine disease phenotype and serology in a well-characterized inception cohort of children newly diagnosed with UC during the PROTECT Study (Predicting Response to Standardized Pediatric Colitis Therapy). Methods Patients were recruited from 29 participating centers. Demographic, clinical, laboratory, and serologic (pANCA, ASCA IgA/IgG, Anti-CBir1, and Anti-OmpC) data were obtained from children 4-17 years old with UC. Results Sixty-five percent of the patients had positive serology for pANCA, with 62% less than 12 years old and 66% 12 years old or older. Perinuclear anti-neutrophil cytoplasmic antibodies did not correspond to a specific phenotype though pANCA ò100, found in 19%, was strongly associated with pancolitis (P = 0.003). Anti-CBir1 was positive in 19% and more common in younger children with 32% less than 12 years old as compared with 14% 12 years old or older (P < 0.001). No association was found in any age group between pANCA and Anti-CBir1. Relative rectal sparing was more common in +CBir1, 16% versus 7% (P = 0.02). Calprotectin was lower in Anti-CBir1+ (Median [IQR] 1495 mcg/g [973-3333] vs 2648 mcg/g [1343-4038]; P = 0.04). Vitamin D 25-OH sufficiency was associated with Anti-CBir1+ (P = 0.0009). Conclusions The frequency of pANCA in children was consistent with adult observations. High titer pANCA was associated with more extensive disease, supporting the idea that the magnitude of immune reactivity may reflect disease severity. Anti-CBir1+ was more common in younger ages, suggesting host-microbial interactions may differ by patient age
Physics with the KLOE-2 experiment at the upgraded DANE
Investigation at a --factory can shed light on several debated issues
in particle physics. We discuss: i) recent theoretical development and
experimental progress in kaon physics relevant for the Standard Model tests in
the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum
Mechanics from time evolution of entangled kaon states, iii) the interest for
improving on the present measurements of non-leptonic and radiative decays of
kaons and eta/eta mesons, iv) the contribution to understand the
nature of light scalar mesons, and v) the opportunity to search for narrow
di-lepton resonances suggested by recent models proposing a hidden dark-matter
sector. We also report on the physics in the continuum with the
measurements of (multi)hadronic cross sections and the study of gamma gamma
processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added
reference to section
Saturation of azimuthal anisotropy in Au + Au collisions at sqrt(s_NN) = 62 - 200 GeV
New measurements are presented for charged hadron azimuthal correlations at
mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are
compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb
collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with
centrality and transverse momentum (p_T) dependence characteristic of elliptic
flow (v_2). For a broad range of centralities, the observed magnitudes and
trends of the differential anisotropy, v_2(p_T), change very little over the
collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the
excitation function for v_2 at these energies. Such a saturation may be
indicative of the dominance of a very soft equation of state for sqrt(s_NN) =
62-200 GeV.Comment: 432 authors, 7 pages text, 4 figures, REVTeX4. To be submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue
Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers
- …