337 research outputs found
Taste intensity and hedonic responses to simple beverages in gastrointestinal cancer patients
Changes in the taste of food have been implicated as a potential cause of reduced dietary intake among cancer patients. However, data on intensity and hedonic responses to the four basic tastes in cancer are scanty and contradictory. The present study aimed at evaluating taste intensity and hedonic responses to simple beverages in 47 anorectic patients affected by gastrointestinal cancer and in 55 healthy subjects. Five suprathreshold concentrations of each of the four test substances (sucrose in black current drinks, citric acid in lemonade, NaCl in unsalted tomato juice, and urea in tonic water) were used. Patients were invited to express a judgment of intensity and pleasantness ranging from 0 to 10. Mean intensity scores directly correlated with concentrations of sour, salty, bitter, and sweet stimuli, in both normals and those with cancer. Intensity judgments were higher in cancer patients with respect to sweet (for median and high concentrations, P < 0.05), salty (for all concentrations, P < 0.05), and bitter tastes (for median concentration, P < 0.01). Hedonic function increased with the increase of the stimuli only for the sweet taste. A negative linear correlation was found between sour, bitter, and salty concentrations and hedonic score. Both in cancer patients and in healthy subjects, hedonic judgments increased with the increase of the stimulus for the sweet taste (r 1/4 0.978 and r 1/4 0.985, P 1/4 0.004 and P 1/4 0.002, respectively), and decreased for the salty (r 1/4 ??0.827 and r 1/4 ??0.884, P 1/4 0.084 and P 1/4 0.047, respectively) and bitter tastes (r 1/4 ??0.990 and r 1/4 ??0.962, P 1/4 0.009 and P 1/4 0.001, respectively). For the sour taste, the hedonic scores remained stable with the increase of the stimulus in noncancer controls (r 1/4 ??0.785, P 1/4 0.115) and decreased in cancer patients (r 1/4 ??0.996, P 1/4 0.0001). The hedonic scores for the sweet taste and the bitter taste were similar in cancer patients and healthy subjects, and these scores were significantly higher in cancer patients than in healthy subjects for most of the concentrations of the salty taste and all the concentrations of the sour taste. The present study suggests that cancer patients, compared to healthy individuals, have a normal sensitivity, a normal likingfor pleasant stimuli, and a decreased dislike for unpleasant stimuli. Moreover, when compared to controls, they show higher hedonic scores for middle and high concentrations of the salty taste and for all concentrations of the sour taste. Further studies are needed to evaluate whether these changes observed in cancer patients translate into any alteration in dietary behavior and/or food preferences
Short-term regulation of peptide YY secretion by a mixed meal or peritoneal glucose-based dialysate in patients with chronic renal failure
This is a pre-copyedited, author-produced version of an article accepted for publication in "Nephrology Dialysis Trasnplantation" following peer review. The version of the record is avaliable online at Oxford Academic website.Instituto de Salud Carlos III, PI051024Instituto de Salud Carlos III, PI070413Xunta de Galicia, PS07/12Xunta de Galicia, 2006/2
Ruling factors in cinnamaldehyde hydrogenation: Activity and selectivity of pt-mo catalysts
To obtain selective hydrogenation catalysts with low noble metal content, two carbon-supported Mo-Pt bimetallic catalysts have been synthesized from two different molybdenum precursors, i.e., Na2MoO4 and (NH4)6Mo7O24. The results obtained by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) combined with the presence and strength of acid sites clarified the different catalytic behavior toward cinnamaldehyde hydrogenation. After impregnating the carbon support with Mo precursors, each sample was used either as is or treated at 400 °C in N2 flow, as support for Pt nanoparticles (NPs). The heating treatment before Pt deposition had a positive effect on the catalytic performance. Indeed, TEM analyses showed very homogeneously dispersed Pt NPs only when they were deposited on the heat-treated Mo/C supports, and XPS analyses revealed an increase in both the exposure and reduction of Pt, which was probably tuned by different MoO3/MoO2 ratios. Moreover, the different acid properties of the catalysts resulted in different selectivity
Discovering indium as hydrogen production booster for a Cu/SiO2 catalyst in steam reforming of methanol
We report on the use of In as an effective H2 production promoter in a Cu/SiO2 catalyst for the steam reforming of methanol. To date, In promotion has been limited to noble metals because of its tendency to “bury” other metals thus compromising the catalytic activity. Here, we prepared a silica-supported Cu-In catalyst via a urea-assisted co-precipitation method that showed a higher H2 productivity compared to the monometallic catalyst and a remarkable H2/CO2 molar ratio of almost 3 at 220 °C. Through XPS, XRPD and HRTEM-EDX along with H2- and CO-TPR, H2O-TPD, and N2O titrations, supported by computational modeling, we attributed such superior performances to an easier H2O activation due to improved electronic properties of the Cu phase, that is, its lower oxidation state via electron density transfer from the InOx buffer phase as a 1D “necklace” structures crucially mediating the interaction of small Cu nanoparticles (2.6 nm) and silica
Dietary daily sodium intake lower than 1500 mg is associated with inadequately low intake of calorie, protein, iron, zinc and vitamin b1 in patients on chronic hemodialysis
Background: To measure daily sodium intake in patients on chronic hemodialysis and to compare the intake of nutrients, minerals, trace elements, and vitamins in patients who had a daily sodium intake below or above the value of 1500 mg recommended by the American Heart Association. Methods: Dietary intake was recorded for 3 days by means of 3-day diet diaries in prevalent patients on chronic hemodialysis. Each patient was instructed by a dietitian on how to fill the diary, which was subsequently signed by a next of kin. Results: We studied 127 patients. Mean sodium intake (mg) was 1295.9 ± 812.3. Eighty-seven (68.5%) patients had a daily sodium intake <1500 mg (group 1) and 40 (31.5%) ≥ 1500 mg (group 2). Correlation between daily sodium intake and daily calorie intake was significant (r = 0.474 [0.327 to 0.599]; p < 0.0001). Daily calorie intake (kcal/kg/day) was lower in group 1 (21.1 ± 6.6; p = 0.0001) than in group 2 (27.1 ± 10.4). Correlation between daily sodium intake and daily protein intake was significant (r = 0.530[0.392 to 0.644]; p < 0.0001). The daily protein intake (grams/kg/day) was lower in group 1 (0.823 ± 0.275; p = 0.0003) than in group 2 (1.061 ± 0.419). Daily intake of magnesium, copper, iron, zinc, and selenium was significantly lower in group 1 than in group 2. Daily intake of vitamin A, B2, B3, and C did not differ significantly between group 1 and group 2. Daily intake of vitamin B1 was significantly lower in group 1 than in group 2. Significantly lower was, in group 1 than in group 2, the percentage of patients within the target value with regard to intake of calories (11.5% vs. 37.5%; p = 0.001) and proteins (9.2% vs. 27.5%; p = 0.015) as well as of iron (23% vs. 45%; p = 0.020), zinc (13.8% vs. 53.8%; p = 0.008) and vitamin B1 (8.1% vs. 50%; p < 0.001). Conclusion: A low daily intake of sodium is associated with an inadequately low intake of calorie, proteins, minerals, trace elements, and vitamin B1. Nutritional counselling aimed to reduce the intake of sodium in patients on chronic hemodialysis should not disregard an adequate intake of macro-and micronutrients, otherwise the risk of malnutrition is high
Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study
Physical frailty and sarcopenia (PF&S) is a prototypical geriatric condition characterized by reduced physical function and low muscle mass. The aim of the present study was to provide an initial selection of biomarkers for PF&S using a novel multivariate analytic strategy. Two-hundred community-dwellers, 100 with PF&S and 100 non-physically frail, non-sarcopenic (nonPF&S) controls aged 70 and older were enrolled as part of the BIOmarkers associated with Sarcopenia and Physical frailty in EldeRly pErsons (BIOSPHERE) study. A panel of 74 serum analytes involved in inflammation, muscle growth and remodeling, neuromuscular junction damage, and amino acid metabolism was assayed. Biomarker selection was accomplished through sequential and orthogonalized covariance selection (SO-CovSel) analysis. Separate SO-CovSel models were constructed for the whole study population and for the two genders. The model with the best prediction ability obtained with the smallest number of variables was built using seven biomolecules. This model allowed correct classification of 80.6 ± 5.3% PF&S participants and 79.9 ± 5.1% nonPF&S controls. The PF&S biomarker profile was characterized by higher serum levels of asparagine, aspartic acid, and citrulline. Higher serum concentrations of platelet-derived growth factor BB, heat shock protein 72 (Hsp72), myeloperoxidase, and α-aminobutyric acid defined the profile of nonPF&S participants. Gender-specific SO-CovSel models identified a “core” biomarker profile of PF&S, characterized by higher serum levels of aspartic acid and Hsp72 and lower concentrations of macrophage inflammatory protein 1β, with peculiar signatures in men and women. SO-CovSel analysis allowed identifying a set of potential biomarkers for PF&S. The adoption of such an innovative multivariate approach could help address the complex pathophysiology of PF&S, translate biomarker discovery from bench to bedside, and unveil novel targets for interventions
Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia
Muscle protein degradation is thought to play a major role in muscle atrophy in cancer cachexia. To investigate the importance of the ubiquitin-proteasome pathway, which has been suggested to be the main degradative pathway mediating progressive protein loss in cachexia, the expression of mRNA for proteasome subunits C2 and C5 as well as the ubiquitin-conjugating enzyme, E214k, has been determined in gastrocnemius and pectoral muscles of mice bearing the MAC16 adenocarcinoma, using competitive quantitative reverse transcriptase polymerase chain reaction. Protein levels of proteasome subunits and E214k were determined by immunoblotting, to ensure changes in mRNA were reflected in changes in protein expression. Muscle weights correlated linearly with weight loss during the course of the study. There was a good correlation between expression of C2 and E214k mRNA and protein levels in gastrocnemius muscle with increases of 6–8-fold for C2 and two-fold for E214k between 12 and 20% weight loss, followed by a decrease in expression at weight losses of 25–27%, although loss of muscle protein continued. In contrast, expression of C5 mRNA only increased two-fold and was elevated similarly at all weight losses between 7.5 and 27%. Both proteasome functional activity, and proteasome-specific tyrosine release as a measure of total protein degradation was also maximal at 18–20% weight loss and decreased at higher weight loss. Proteasome expression in pectoral muscle followed a different pattern with increases in C2 and C5 and E214k mRNA only being seen at weight losses above 17%, although muscle loss increased progressively with increasing weight loss. These results suggest that activation of the ubiquitin-proteasome pathway plays a major role in protein loss in gastrocnemius muscle, up to 20% weight loss, but that other factors such as depression in protein synthesis may play a more important role at higher weight loss
High carbon efficiency in CO-to-alcohol electroreduction using a CO reservoir
The electrochemical CO2 reduction reaction (CO2RR) has progressed but suffers an energy penalty from CO2 loss due to carbonate formation and crossover. Cascade CO2 to CO conversion followed by CO reduction addresses this issue, but the combined figures of carbon efficiency (CE), energy efficiency (EE), selectivity, and stability require improvement. We posited that increased CO availability near active catalytic sites could maintain selectivity even under CO-depleted conditions. Here, we present a heterojunction carbon reservoir catalyst (CRC) architecture that combines copper nanoparticles with porous carbon nanoparticles. The pyridinic and pyrrolic functionalities of CRC can absorb CO enabling high CE under CO-depleted conditions. With CRC catalyst, we achieve ethanol FE and CE of 50% and 93% (CE∗Faradaic efficiency [FE] = 47%) in flow cell at 200 mA cm−2, fully doubling the best prior CE∗FE to ethanol. In membrane electrode assembly (MEA) system, we show sustained efficiency over 85 h at 100 mA cm−2
- …
