489 research outputs found

    The Ca2+/Cl− dependent L-[3H]glutamate binding: a new receptor or a particular transport process?

    Get PDF
    AbstractCa2+/Cl− increases the L-[3H]glutamate binding to rat brain synaptic membranes. It was suggested that Ca2+/Cl− expresses a new class of glutamate receptors. We report several lines of evidence suggesting that Ca2+/Cl− in fact favours a glutamate transport into membrane vesicles. This finding may serve to reconcile most of the discrepancies found in the literature on the glutamate binding and its pharmacology

    A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors

    Get PDF
    There is accumulating evidence that membrane-bound receptors interact with many intracellular proteins. Multiprotein complexes associated with ionotropic receptors have been extensively characterized, but the identification of proteins interacting with G protein-coupled receptors (GPCRs) has so far only been achieved in a piecemeal fashion, focusing on one or two protein species. We describe a method based on peptide affinity chromatography, two-dimensional electrophoresis, mass spectrometry and immunoblotting to identify the components of multiprotein complexes interacting directly or indirectly with intracellular domains of GPCRs or, more generally, any other membrane-bound receptor. Using this global approach, we have characterized multiprotein complexes that bind to the carboxy-terminal tail of the 5-hydroxytryptamine type 2C receptor and are important for its subcellular localization in CNS cells (Bécamel et al., EMBO J., 21(10): 2332, 2002)

    Palmitoylation of human proteinase-activated receptor-2 differentially regulates receptor-triggered ERK1/2 activation, calcium signalling and endocytosis

    Get PDF
    hPAR2 (human proteinase-activated receptor-2) is a member of the novel family of proteolytically activated GPCRs (G-protein-coupled receptors) termed PARs (proteinase-activated receptors). Previous pharmacological studies have found that activation of hPAR2 by mast cell tryptase can be regulated by receptor N-terminal glycosylation. In order to elucidate other post-translational modifications of hPAR2 that can regulate function, we have explored the functional role of the intracellular cysteine residue Cys361. We have demonstrated, using autoradiography, that Cys361 is the primary palmitoylation site of hPAR2. The hPAR2C361A mutant cell line displayed greater cell-surface expression compared with the wt (wild-type)-hPAR2-expressing cell line. hPAR2C361A also showed a decreased sensitivity and efficacy (intracellular calcium signalling) towards both trypsin and SLIGKV. In stark contrast, hPAR2C361A triggered greater and more prolonged ERK (extracellular-signal-regulated kinase) phosphorylation compared with that of wt-hPAR2 possibly through Gi, since pertussis toxin inhibited the ability of this receptor to activate ERK. Finally, flow cytometry was utilized to assess the rate and extent of receptor internalization following agonist challenge. hPAR2C361A displayed faster internalization kinetics following trypsin activation compared with wt-hPAR2, whereas SLIGKV had a negligible effect on internalization for either receptor. In conclusion, palmitoylation plays an important role in the regulation of PAR2 expression, agonist sensitivity, desensitization and internalization

    Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies

    Get PDF
    The dramatic increase in heterogeneous types of biological data—in particular, the abundance of new protein sequences—requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity—GPCRs and kinases from humans, and the crotonase superfamily of enzymes—we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships

    5-Hydroxytryptamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    oai:ojs.pkp.sfu.ca:article/31555-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [194] and subsequently revised [176]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 482]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [463, 382])

    5-Hydroxytryptamine receptors in GtoPdb v.2023.1

    Get PDF
    5-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [198] and subsequently revised [180]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 491]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [471, 387])

    Molecular evolution of a chordate specific family of G protein-coupled receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success.</p> <p>Results</p> <p>We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C) in vertebrates, and a fourth homologue present only in mammals (GPRC5D). Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A <it>in vivo</it>, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling.</p> <p>Conclusions</p> <p>GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non-chordates to become chordates.</p

    Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates

    Get PDF
    In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x
    corecore