246 research outputs found

    A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity

    Get PDF
    It is known that vitamin A and its metabolite, retinoic acid (RA), are essential for host defense. However, the mechanisms for how RA controls inflammation are incompletely understood. The findings presented in this study show that RA signaling occurs concurrent with the development of inflammation. In models of vaccination and allogeneic graft rejection, whole body imaging reveals that RA signaling is temporally and spatially restricted to the site of inflammation. Conditional ablation of RA signaling in T cells significantly interferes with CD4(+) T cell effector function, migration, and polarity. These findings provide a new perspective of the role of RA as a mediator directly controlling CD4(+) T cell differentiation and immunity

    Derangement of a Factor Upstream of RARα Triggers the Repression of a Pleiotropic Epigenetic Network

    Get PDF
    Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha), can impair the integration of the retinoic acid (RA) signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha.To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2), which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function.Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes

    Vitamin A, carotenoid and vitamin E plasma concentrations in children from Laos in relation to sex and growth failure

    Get PDF
    BACKGROUND: Deficiencies of vitamin A and its precursors, the carotenoids are common problems in developing countries. Plasma levels of these components are used as biomarkers of their availability. The study was conducted to evaluate whether blood plasma obtained from capillaries can be compared with plasma obtained from venous blood with regard to its levels of retinol, carotenoids and α-tocopherol and secondly to apply this technique to evaluate the levels of these components in children in a region with possible deficiencies. METHODS: The survey was conducted in a region of Laos in 81 children (age 35 to 59 months). Dietary intake was assessed by a questionnaire. Retinol, carotenoids and α-tocopherol were determined by HPLC. Blood plasma was obtained either from capillary blood collected into microcapillaries and for reasons of methodological comparison in 14 adults from venous blood. RESULTS: The comparison between capillary and venous blood revealed that all components except zeaxanthin were 9 – 23 % higher in plasma obtained from capillary blood. Results in Laotian children showed that all investigated components except retinol were significantly lower (P < 0.01) compared to European children of slightly older age. Contrary to children in Europe, most components were significantly lower in boys compared to girls. In children from Laos, lutein was the dominant carotenoid, while in children in Europe, β-carotene was dominant. Within the Laotian children only a few differences were observed between stunted and non-stunted children and between children from lowland areas and high land areas. CONCLUSIONS: Results show that in consideration of slightly lower levels than in venous blood, capillary blood can be used to evaluate retinol, carotenoids and α-tocopherol as biomarkers of intake or status and to evaluate the possible effect of diet on absolute and relative carotenoid composition in children from Europe and Laos. Observed sex related differences might not be related to diet and would need further investigation

    Cloning and Functional Studies of a Splice Variant of CYP26B1 Expressed in Vascular Cells

    Get PDF
    Background: All-trans retinoic acid (atRA) plays an essential role in the regulation of gene expression, cell growth and differentiation and is also important for normal cardiovascular development but may in turn be involved in cardiovascular diseases, i.e. atherosclerosis and restenosis. The cellular atRA levels are under strict control involving several cytochromes P450 isoforms (CYPs). CYP26 may be the most important regulator of atRA catabolism in vascular cells. The present study describes the molecular cloning, characterization and function of atRA-induced expression of a spliced variant of the CYP26B1 gene. Methodology/Principal Findings: The coding region of the spliced CYP26B1 lacking exon 2 was amplified from cDNA synthesized from atRA-treated human aortic smooth muscle cells and sequenced. Both the spliced variant and full length CYP26B1 was found to be expressed in cultured human endothelial and smooth muscle cells, and in normal and atherosclerotic vessel. atRA induced both variants of CYP26B1 in cultured vascular cells. Furthermore, the levels of spliced mRNA transcript were 4.5 times higher in the atherosclerotic lesion compared to normal arteries and the expression in the lesions was increased 20-fold upon atRA treatment. The spliced CYP26B1 still has the capability to degrade atRA, but at an initial rate one-third that of the corresponding full length enzyme. Transfection of COS-1 and THP-1 cells with the CYP26B1 spliced variant indicated either an increase or a decrease in the catabolism of atRA, probably depending on the expression of other atRA catabolizing enzymes in the cells. Conclusions/Significance: Vascular cells express the spliced variant of CYP26B1 lacking exon 2 and it is also increased in atherosclerotic lesions. The spliced variant displays a slower and reduced degradation of atRA as compared to the full-length enzyme. Further studies are needed, however, to clarify the substrate specificity and role of the CYP26B1 splice variant in health and disease

    Inhibition of Endothelin-1-Mediated Contraction of Hepatic Stellate Cells by FXR Ligand

    Get PDF
    Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands

    Adenylyl Cyclase Plays a Regulatory Role in Development, Stress Resistance and Secondary Metabolism in Fusarium fujikuroi

    Get PDF
    The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H2O2), but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group

    Cyp26b1 Regulates Retinoic Acid-Dependent Signals in T Cells and Its Expression Is Inhibited by Transforming Growth Factor-β

    Get PDF
    The vitamin A metabolite, retinoic acid (RA), plays important roles in the regulation of lymphocyte properties. Dendritic cells in gut-related lymphoid organs can produce RA, thereby imprinting gut-homing specificity on T cells and enhancing transforming growth factor (TGF)-β-dependent induction of Foxp3+ regulatory T cells upon antigen presentation. In general, RA concentrations in cells and tissues are regulated by its degradation as well. However, it remained unclear if T cells could actively catabolize RA.We assessed the expression of known RA-catabolizing enzymes in T cells from mouse lymphoid tissues. Antigen-experienced CD44+ T cells in gut-related lymphoid organs selectively expressed Cyp26b1, a member of the cytochrome P450 family 26. However, T cells in the spleen or skin-draining lymph nodes did not significantly express Cyp26b1. Accordingly, physiological levels of RA (1-10 nM) could induce Cyp26b1 expression in naïve T cells upon activation in vitro, but could not do so in the presence of TGF-β. Overexpression of Cyp26b1 significantly suppressed the RA effect to induce expression of the gut-homing receptor CCR9 on T cells. On the other hand, knocking down Cyp26b1 gene expression with small interfering RNA or inhibiting CYP26 enzymatic activity led to enhancement of the RA-induced CCR9 expression.Our data demonstrate a role for CYP26B1 in regulating RA-dependent signals in activated T cells but not during TGF-β-dependent differentiation to Foxp3+ regulatory T cells. Aberrant expression of CYP26B1 may disturb T cell trafficking and differentiation in the gut and its related lymphoid organs

    RIG-I Is Required for the Inhibition of Measles Virus by Retinoids

    Get PDF
    Vitamin A can significantly decrease measles-associated morbidity and mortality. Vitamin A can inhibit the replication of measles virus (MeV) in vitro through an RARα- and type I interferon (IFN)-dependent mechanism. Retinoid-induced gene I (RIG-I) expression is induced by retinoids, activated by MeV RNA and is important for IFN signaling. We hypothesized that RIG-I is central to retinoid-mediated inhibition of MeV in vitro. We demonstrate that RIG-I expression is increased in cells treated with retinoids and infected with MeV. The central role of RIG-I in the retinoid-anti-MeV effect was demonstrated in the Huh-7/7.5 model; the latter cells having non-functional RIG-I. RAR-dependent retinoid signaling was required for the induction of RIG-I by retinoids and MeV. Retinoid signaling was also found to act in combination with IFN to induce high levels of RIG-I expression. RIG-I promoter activation required both retinoids and MeV, as indicated by markers of active chromatin. IRF-1 is known to be regulated by retinoids and MeV, but we found recruitment of IRF-1 to the RIG-I promoter by retinoids alone. Using luciferase expression constructs, we further demonstrated that the IRF-1 response element of RIG-I was required for RIG-I activation by retinoids or IFN. These results reveal that retinoid treatment and MeV infection induces significant RIG-I. RIG-I is required for the retinoid-MeV antiviral response. The induction is dependent on IFN, retinoids and IRF-1

    The Retinoic Acid Receptor Agonist Am80 Increases Mucosal Inflammation in an IL-6 Dependent Manner During Trichuris muris Infection

    Get PDF
    PURPOSE: Vitamin A metabolites, such as all-trans-retinoic acid (RA) that act through the nuclear receptor; retinoic acid receptor (RAR), have been shown to polarise T cells towards Th2, and to be important in resistance to helminth infections. Co-incidentally, people harbouring intestinal parasites are often supplemented with vitamin A, as both vitamin A deficiency and parasite infections often occur in the same regions of the globe. However, the impact of vitamin A supplementation on gut inflammation caused by intestinal parasites is not yet completely understood. METHODS: Here, we use Trichuris muris, a helminth parasite that buries into the large intestine of mice causing mucosal inflammation, as a model of both human Trichuriasis and IBD, treat with an RARα/β agonist (Am80) and quantify the ensuing pathological changes in the gut. RESULTS: Critically, we show, for the first time, that rather than playing an anti-inflammatory role, Am80 actually exacerbates helminth-driven inflammation, demonstrated by an increased colonic crypt length and a significant CD4(+) T cell infiltrate. Further, we established that the Am80-driven crypt hyperplasia and CD4(+) T cell infiltrate were dependent on IL-6, as both were absent in Am80-treated IL-6 knock-out mice. CONCLUSIONS: This study presents novel data showing a pro-inflammatory role of RAR ligands in T. muris infection, and implies an undesirable effect for the administration of vitamin A during chronic helminth infection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10875-013-9936-8) contains supplementary material, which is available to authorized users
    corecore