363 research outputs found
Magnetoelectric coupling in MnTiO3
We give general arguments that show that the linear magnetoelectric effect in antiferromagnetic materials gives rise to a magnetocapacitance anomaly—a divergence of the dielectric constant at the magnetic ordering temperature TN that appears in an applied magnetic field. The measurement of magnetodielectric response thus provides a definitive and experimentally accessiblemethod to recognize antiferromagnetic linear magnetoelectric materials, circumventing the experimental difficulties often involved in measuring electric polarization. We confirm this result experimentally using the example of MnTiO3, which we show to exhibit the linear magnetoelectric effect. No dielectric anomaly is observed at TN in the absence of an applied magnetic field. However, a sharp peak in the dielectric constant appears here when a magnetic field is applied along the c axis, reflecting a linear coupling of the polarization P with the antiferromagnetic order parameter L. In accordance with our theoretical analysis, the dielectric constant close to TN increases with the square of the magnetic field.
Anisotropic Optic Conductivities due to Spin and Orbital Orderings in LaVO3 and YVO3: First-Principles Studies
The anisotropy of low energy (05eV) optical excitations in strongly
correlated transition-metal oxides is closely related to the spin and orbital
orderings. The recent successes of LDA+ method in describing the magnetic
and electronic structures enable us to calculate the optical conductivity from
first-principles. The LaVO and YVO, both of which have
configuration and have various spin and orbital ordered phases at low
temperature, show distinct anisotropy in the optical spectra. The effects of
spin and orbital ordering on the anisotropy are studied in detail based on our
first-principles calculations. The experimental spectra of both compounds at
low temperature phases can be qualitatively explained with our calculations,
while the studies for the intermediate temperature phase of YVO suggest the
substantial persistence of the low temperature phase at elevated temperature.Comment: 6 pages, 3 figures, accepted by PR
Structural, electronic, and magneto-optical properties of YVO
Optical and magneto-optical properties of YVO single crystal were studied
in FIR, visible, and UV regions. Two structural phase transitions at 75 K and
200 K were observed and established to be of the first and second order,
respectively. The lattice has an orthorhombic symmetry both above 200 K
as well as below 75 K, and is found to be dimerized monoclinic in
between. We identify YVO as a Mott-Hubbard insulator with the optical gap
of 1.6 eV. The electronic excitations in the visible spectrum are determined by
three -bands at 1.8, 2.4, and 3.3 eV, followed by the charge-transfer
transitions at about 4 eV. The observed structure is in good agreement with
LSDA+ band structure calculations. By using ligand field considerations, we
assigned these bands to the transitions to the , , and states. The strong temperature dependence of these
bands is in agreement with the formation of orbital order. Despite the small
net magnetic moment of 0.01 per vanadium, the Kerr effect of the order
of was observed for all three -bands in the magnetically
ordered phase . A surprisingly strong enhancement of
the Kerr effect was found below 75 K, reaching a maximum of . The
effect is ascribed to the non-vanishing net orbital magnetic moment.Comment: Submitted to Phys. Rev.
Entropy Driven Dimerization in a One-Dimensional Spin-Orbital Model
We study a new version of the one-dimensional spin-orbital model with spins
S=1 relevant to cubic vanadates. At small Hund's coupling J_H we discover
dimerization in a pure electronic system solely due to a dynamical spin-orbital
coupling. Above a critical value J_H, a uniform ferromagnetic state is
stabilized at zero temperature. More surprisingly, we observe a temperature
driven dimerization of the ferrochain, which occurs due to a large entropy
released by dimer states. This dynamical dimerization seems to be the mechanism
driving the peculiar intermediate phase of YVO_3.Comment: 5 pages, 4 figure
Quantum Phase Transitions in the One-Dimensional S=1 Spin-Orbital Model: Implications for Cubic Vanadates
We investigate ground-state properties and quantum phase transitions in the
one-dimensional S=1 spin-orbital model relevant to cubic vanadates. Using the
density matrix renormalization group, we compute the ground-state energy, the
magnetization and the correlation functions for different values of the Hund's
coupling and the external magnetic field. It is found that the
magnetization jumps at a certain critical field, which is a hallmark of the
field-induced first-order phase transition. The phase transition driven by
is also of first order. We also consider how the lattice-induced
ferro-type interaction between orbitals modifies the phase diagram, and discuss
the results in a context of the first-order phase transition observed in
YVO at 77K.Comment: 7 pages, 7 figur
Orbital Wave and its Observation in Orbital Ordered Titanates and Vanadates
We present a theory of the collective orbital excitation termed orbital wave
in perovskite titanates and vanadates with the triply degenerate
orbitals. The dispersion relations of the orbital waves for the orbital ordered
LaVO, YVO and YTiO are examined in the effective spin-orbital
coupled Hamiltonians associated with the Jahn-Teller type couplings. We propose
possible scattering processes for the Raman and inelastic neutron scatterings
from the orbital wave and calculate the scattering spectra for titanates and
vanadates. It is found that both the excitation spectra and the observation
methods of the orbital wave are distinct qualitatively from those for the
orbital ordered systems.Comment: 9 pages, 7 figure
Modeling of complex oxide materials from the first principles: systematic applications to vanadates RVO3 with distorted perovskite structure
"Realistic modeling" is a new direction of electronic structure calculations,
where the main emphasis is made on the construction of some effective
low-energy model entirely within a first-principle framework. Ideally, it is a
model in form, but with all the parameters derived rigorously, on the basis of
first-principles electronic structure calculations. The method is especially
suit for transition-metal oxides and other strongly correlated systems, whose
electronic and magnetic properties are predetermined by the behavior of some
limited number of states located near the Fermi level. After reviewing general
ideas of realistic modeling, we will illustrate abilities of this approach on
the wide series of vanadates RVO3 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, and Y)
with distorted perovskite structure. Particular attention will be paid to
computational tools, which can be used for microscopic analysis of different
spin and orbital states in the partially filled t2g-band. We will explicitly
show how the lifting of the orbital degeneracy by the monoclinic distortion
stabilizes C-type antiferromagnetic (AFM) state, which can be further
transformed to the G-type AFM state by changing the crystal distortion from
monoclinic to orthorhombic one. Two microscopic mechanisms of such a
stabilization, associated with the one-electron crystal field and electron
correlation interactions, are discussed. The flexibility of the orbital degrees
of freedom is analyzed in terms of the magnetic-state dependence of interatomic
magnetic interactions.Comment: 23 pages, 13 figure
Evidence for orbital ordering in LaCoO3
We present powder and single crystal X-ray diffraction data as evidence for a
monoclinic distortion in the low spin (S=0) and intermediate spin state (S=1)
of LaCoO3. The alternation of short and long bonds in the ab plane indicates
the presence of eg orbital ordering induced by a cooperative Jahn-Teller
distortion. We observe an increase of the Jahn-Teller distortion with
temperature in agreement with a thermally activated behavior of the Co3+ ions
from a low-spin ground state to an intermediate-spin excited state.Comment: Accepted to Phys. Rev.
Computational analysis of transitional airflow through packed columns of spheres using the finite volume technique
Copyright © 2010 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Computers and Chemical Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers and Chemical Engineering, Volume 34 Issue 6 (2010), DOI: 10.1016/j.compchemeng.2009.10.013We compare computational simulations of the flow of air through a packed column containing spherical particles with experimental and theoretical results for equivalent beds. The column contained 160 spherical particles at an aspect ratio N=7.14N=7.14, and the experiments and simulations were carried out at particle Reynolds numbers of (RedP=700−5000)(RedP=700−5000). Experimental measurements were taken of the pressure drop across the column and compared with the correlation of Reichelt (1972) using the fitted coefficients of Eisfeld and Schnitzlein (2001). An equivalent computational domain was prepared using Monte Carlo packing, from which computational meshes were generated and analysed in detail. Computational fluid dynamics calculations of the air flow through the simulated bed was then performed using the finite volume technique. Results for pressure drop across the column were found to correlate strongly with the experimental data and the literature correlation. The flow structure through the bed was also analysed in detail
Ferroelectricity Induced by Acentric Spin-Density Waves in YMn2O5
The commensurate and incommensurate magnetic structures of the magnetoelectric system YMn2O5, as determined from neutron diffraction, were found to be spin-density waves lacking a global center of symmetry. We propose a model, based on a simple magnetoelastic coupling to the lattice, which enables us to predict the polarization based entirely on the observed magnetic structure. Our data accurately reproduce the temperature dependence of the spontaneous polarization, particularly its sign reversal at the commensurate-incommensurate transition
- …
