4,327 research outputs found
Minimizing the Cost of Team Exploration
A group of mobile agents is given a task to explore an edge-weighted graph
, i.e., every vertex of has to be visited by at least one agent. There
is no centralized unit to coordinate their actions, but they can freely
communicate with each other. The goal is to construct a deterministic strategy
which allows agents to complete their task optimally. In this paper we are
interested in a cost-optimal strategy, where the cost is understood as the
total distance traversed by agents coupled with the cost of invoking them. Two
graph classes are analyzed, rings and trees, in the off-line and on-line
setting, i.e., when a structure of a graph is known and not known to agents in
advance. We present algorithms that compute the optimal solutions for a given
ring and tree of order , in time units. For rings in the on-line
setting, we give the -competitive algorithm and prove the lower bound of
for the competitive ratio for any on-line strategy. For every strategy
for trees in the on-line setting, we prove the competitive ratio to be no less
than , which can be achieved by the algorithm.Comment: 25 pages, 4 figures, 5 pseudo-code
CARMA1 is a novel regulator of T-ALL disease and leukemic cell migration to the CNS
No abstract available
Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule
Camptothecin (CPT), a monoterpene indole alkaloid, is a potent inhibitor of DNA topoisomerase I and has applications in treating ovarian, small lung and refractory ovarian cancers. Stem wood tissue of Nothapodytes nimmoniana (Graham) Mabb. (family Icacinaceae) is one of the richest sources of CPT. Since there is no genomic or transcriptome data available for the species, the present work sequenced and analysed transcriptome of stem wood tissue on an Illumina platform. From a total of 77,55,978 reads, 9,187 transcripts were assembled with an average length of 255 bp. Functional annotation and categorization of these assembled transcripts unraveled the transcriptome
architecture and also a total of 13 genes associated with CPT biosynthetic pathway were identified in the stem wood
tissue. Four genes of the pathway were cloned to full length by RACE to validate the transcriptome data. Expression analysis of 13 genes associated with CPT biosynthetic pathway in 11 different tissues vis-à-vis CPT content analysis suggested an important role of NnPG10H, NnPSLS and NnPSTR genes in the biosynthesis of CPT. These results indicated that CPT might be synthesized in the leaves and then perhaps exported to stem wood tissue for storage
Urbanization and Green Spaces—A Study on Jnana Bharathi Campus, Bangalore University
Global warming is amongst the most alarming problems of the new era. Carbon emission is evidently the strongest fundamental factor for global warming. So increasing carbon emission is one of today’s major concerns, which is well addressed in the Kyoto Protocol. Trees are amongst the most significant elements of any landscape, because of both biomass and diversity, and their key role in ecosystem dynamics is well known. Trees absorb the atmospheric carbon dioxide and act as a carbon sink, since 50 % of biomass is carbon itself and the importance of carbon sequestration in forest areas is already accepted, and well documented. With this background, a carbon sequestration potential study was carried out in Jnana Bharathi campus, Bangalore University using the Quadrat method. The total geographical area is about 449.74 ha with a rich vegetation sector and the total amount of both above ground carbon (AGC) and below ground carbon (BGC) was estimated as an average of 54.8 t/ha. The total amount of carbon dioxide assimilated into the vegetation in terms of both above ground and below ground biomass was estimated as an average of 200.9 t/ha. Urbanization and habitat fragmentation seem to be increasing worldwide, substantiated by a case study in Bangalore City. The analysis revealed that increase in built-up area at the city level was by about 164.62 km2, while the vegetation and water bodies decreased by about 285.72 and 7.2 km2 respectively. However, Bangalore University, Jnana Bharathi campus attains a good vegetation cover and is seen as one of the ‘green lungs’ of Bangalore city
Insecticide resistance and the future of malaria control in Zambia.
BACKGROUND: In line with the Global trend to improve malaria control efforts a major campaign of insecticide treated net distribution was initiated in 1999 and indoor residual spraying with DDT or pyrethroids was reintroduced in 2000 in Zambia. In 2006, these efforts were strengthened by the President's Malaria Initiative. This manuscript reports on the monitoring and evaluation of these activities and the potential impact of emerging insecticide resistance on disease transmission. METHODS: Mosquitoes were captured daily through a series of 108 window exit traps located at 18 sentinel sites. Specimens were identified to species and analyzed for sporozoites. Adult Anopheles mosquitoes were collected resting indoors and larva collected in breeding sites were reared to F1 and F0 generations in the lab and tested for insecticide resistance following the standard WHO susceptibility assay protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 14 years. RESULTS: A total of 619 Anopheles gambiae s.l. and 228 Anopheles funestus s.l. were captured from window exit traps throughout the period, of which 203 were An. gambiae malaria vectors and 14 An. funestus s.s.. In 2010 resistance to DDT and the pyrethroids deltamethrin, lambda-cyhalothrin and permethrin was detected in both An. gambiae s.s. and An. funestus s.s.. No sporozoites were detected in either species. Prevalence of P. falciparum in the sentinel sites remained below 10% throughout the study period. CONCLUSION: Both An. gambiae s.s. and An. funestus s.s. were controlled effectively with the ITN and IRS programme in Zambia, maintaining a reduced disease transmission and burden. However, the discovery of DDT and pyrethroid resistance in the country threatens the sustainability of the vector control programme
SPECTROPHOTOMETRIC EVALUATION OF NIMESULIDE IMPURITY D: 4-NITRO-2- PHENOXYANILINE USING 8-HYDROXYQUINOLINE AS OXIDATIVE COUPLING REAGENT
Objective: Spectrophotometric investigation of 4-nitro-2-phenoxyaniline (4N2PA), a probable intermediate during the synthesis of anti-inflammatory drug nimesulide, both in pure form and in the presence of nimesulide has been attempted. Methods: 4N2PA on diazotization followed by coupling with 8-hydroxyquinoline produces a crimson-colored complex which changes to deep violet on diluting with ethanol. Results: The complex showed maximum absorbance at 560 nm when evaluated spectrophotometrically with a detection limit of 0.005 μg/ml and quantification range of 0.05-3.0 μg/ml. The method has been statistically evaluated with respect to the International Council for Harmonisation guidelines and found to be accurate and precise. Conclusion: Pure tablet formulations of nimesulide do not respond to the method; however, the presence of minute amounts of 4N2PA in the drug as added impurity could be spectrophotometrically analyzed. Hence, the authors suggest that the reported technique could be a marker test for detecting the presence of 4N2PA in nimesulide formulations
Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes
IACT observations of gamma-ray bursts: prospects for the Cherenkov Telescope Array
Gamma rays at rest frame energies as high as 90 GeV have been reported from
gamma-ray bursts (GRBs) by the Fermi Large Area Telescope (LAT). There is
considerable hope that a confirmed GRB detection will be possible with the
upcoming Cherenkov Telescope Array (CTA), which will have a larger effective
area and better low-energy sensitivity than current-generation imaging
atmospheric Cherenkov telescopes (IACTs). To estimate the likelihood of such a
detection, we have developed a phenomenological model for GRB emission between
1 GeV and 1 TeV that is motivated by the high-energy GRB detections of
Fermi-LAT, and allows us to extrapolate the statistics of GRBs seen by lower
energy instruments such as the Swift-BAT and BATSE on the Compton Gamma-ray
Observatory. We show a number of statistics for detected GRBs, and describe how
the detectability of GRBs with CTA could vary based on a number of parameters,
such as the typical observation delay between the burst onset and the start of
ground observations. We also consider the possibility of using GBM on Fermi as
a finder of GRBs for rapid ground follow-up. While the uncertainty of GBM
localization is problematic, the small field-of-view for IACTs can potentially
be overcome by scanning over the GBM error region. Overall, our results
indicate that CTA should be able to detect one GRB every 20 to 30 months with
our baseline instrument model, assuming consistently rapid pursuit of GRB
alerts, and provided that spectral breaks below 100 GeV are not a common
feature of the bright GRB population. With a more optimistic instrument model,
the detection rate can be as high as 1 to 2 GRBs per year.Comment: 28 pages, 24 figures, 4 tables, submitted to Experimental Astronom
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
- …
