2,617 research outputs found

    Loop expansion in Yang-Mills thermodynamics

    Get PDF
    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.Comment: 15 pages, 2 figures, v5: discussion of much more severely constrained nonplanar situation included in Sec.

    Origin of symbol-using systems: speech, but not sign, without the semantic urge

    Get PDF
    Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint

    Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture

    Get PDF
    Most, if not all, unconditional results towards the abc-conjecture rely ultimately on classical Baker's method. In this article, we turn our attention to its elliptic analogue. Using the elliptic Baker's method, we have recently obtained a new upper bound for the height of the S-integral points on an elliptic curve. This bound depends on some parameters related to the Mordell-Weil group of the curve. We deduce here a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable quantities. We then study which abc-type inequality over number fields could be derived from this elliptic approach.Comment: 20 pages. Some changes, the most important being on Conjecture 3.2, three references added ([Mas75], [MB90] and [Yu94]) and one reference updated [BS12]. Accepted in Bull. Brazil. Mat. So

    Keeper-animal interactions: differences between the behaviour of zoo animals affect stockmanship

    Get PDF
    Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowl- edge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman’s zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n=93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals’ latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: “attitude towards the animals” and “knowledge and experience of the animals”. In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under M↔M−1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx∌1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M−1M^{-1} but the evaporation of those smaller than 10−3610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy

    Synthetic three-dimensional atomic structures assembled atom by atom

    Full text link
    We demonstrate the realization of large, fully loaded, arbitrarily-shaped three-dimensional arrays of single atoms. Using holographic methods and real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures with up to 72 atoms separated by distances of a few micrometres. Our method allows for high average filling fractions and the unique possibility to obtain defect-free arrays with high repetition rates. These results find immediate application for the quantum simulation of spin Hamiltonians using Rydberg atoms in state-of-the-art platforms, and are very promising for quantum-information processing with neutral atoms.Comment: 5 pages, 3 figure

    The epidemiology of injuries across the weight-training sports

    Get PDF
    Background: Weight-training sports, including weightlifting, powerlifting, bodybuilding, strongman, Highland Games, and CrossFit, are weight-training sports that have separate divisions for males and females of a variety of ages, competitive standards, and bodyweight classes. These sports may be considered dangerous because of the heavy loads commonly used in training and competition. Objectives: Our objective was to systematically review the injury epidemiology of these weight-training sports, and, where possible, gain some insight into whether this may be affected by age, sex, competitive standard, and bodyweight class. Methods: We performed an electronic search using PubMed, SPORTDiscus, CINAHL, and Embase for injury epidemiology studies involving competitive athletes in these weight-training sports. Eligible studies included peer-reviewed journal articles only, with no limit placed on date or language of publication. We assessed the risk of bias in all studies using an adaption of the musculoskeletal injury review method. Results: Only five of the 20 eligible studies had a risk of bias score ≄75 %, meaning the risk of bias in these five studies was considered low. While 14 of the studies had sample sizes >100 participants, only four studies utilized a prospective design. Bodybuilding had the lowest injury rates (0.12–0.7 injuries per lifter per year; 0.24–1 injury per 1000 h), with strongman (4.5–6.1 injuries per 1000 h) and Highland Games (7.5 injuries per 1000 h) reporting the highest rates. The shoulder, lower back, knee, elbow, and wrist/hand were generally the most commonly injured anatomical locations; strains, tendinitis, and sprains were the most common injury type. Very few significant differences in any of the injury outcomes were observed as a function of age, sex, competitive standard, or bodyweight class. Conclusion: While the majority of the research we reviewed utilized retrospective designs, the weight-training sports appear to have relatively low rates of injury compared with common team sports. Future weight-training sport injury epidemiology research needs to be improved, particularly in terms of the use of prospective designs, diagnosis of injury, and changes in risk exposure

    Synoptic tool for reporting of hematological and lymphoid neoplasms based on World Health Organization classification and College of American Pathologists checklist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Synoptic reporting, either as part of the pathology report or replacing some free text component incorporates standardized data elements in the form of checklists for pathology reporting. This ensures the pathologists make note of these findings in their reports, thereby improving the quality and uniformity of information in the pathology reports.</p> <p>Methods</p> <p>The purpose of this project is to develop the entire set of elements in the synoptic templates or "worksheets" for hematologic and lymphoid neoplasms using the World Health Organization (WHO) Classification and the College of American Pathologists (CAP) Cancer Checklists. The CAP checklists' content was supplemented with the most updated classification scheme (WHO classification), specimen details, staging as well as information on various ancillary techniques such as cytochemical studies, immunophenotyping, cytogenetics including Fluorescent In-situ Hybridization (FISH) studies and genotyping. We have used a digital synoptic reporting system as part of an existing laboratory information system (LIS), CoPathPlus, from Cerner DHT, Inc. The synoptic elements are presented as discrete data points, so that a data element such as tumor type is assigned from the synoptic value dictionary under the value of tumor type, allowing the user to search for just those cases that have that value point populated.</p> <p>Results</p> <p>These synoptic worksheets are implemented for use in our LIS. The data is stored as discrete data elements appear as an accession summary within the final pathology report. In addition, the synoptic data can be exported to research databases for linking pathological details on banked tissues.</p> <p>Conclusion</p> <p>Synoptic reporting provides a structured method for entering the diagnostic as well as prognostic information for a particular pathology specimen or sample, thereby reducing transcription services and reducing specimen turnaround time. Furthermore, it provides accurate and consistent diagnostic information dictated by pathologists as a basis for appropriate therapeutic modalities. Using synoptic reports, consistent data elements with minimized typographical and transcription errors can be generated and placed in the LIS relational database, enabling quicker access to desired information and improved communication for appropriate cancer management. The templates will also eventually serve as a conduit for capturing and storing data in the virtual biorepository for translational research. Such uniformity of data lends itself to subsequent ease of data viewing and extraction, as demonstrated by rapid production of standardized, high-quality data from the hemopoietic and lymphoid neoplasm specimens.</p

    The role of clathrin in post-golgi trafficking in toxoplasma gondii

    Get PDF
    Apicomplexan parasites are single eukaryotic cells with a highly polarised secretory system that contains unique secretory organelles (micronemes and rhoptries) that are required for host cell invasion. In contrast, the role of the endosomal system is poorly understood in these parasites. With many typical endocytic factors missing, we speculated that endocytosis depends exclusively on a clathrin-mediated mechanism. Intriguingly, in Toxoplasma gondii we were only able to observe the endogenous clathrin heavy chain 1 (CHC1) at the Golgi, but not at the parasite surface. For the functional characterisation of Toxoplasma gondii CHC1 we generated parasite mutants conditionally expressing the dominant negative clathrin Hub fragment and demonstrate that CHC1 is essential for vesicle formation at the trans-Golgi network. Consequently, the functional ablation of CHC1 results in Golgi aberrations, a block in the biogenesis of the unique secretory microneme and rhoptry organelles, and of the pellicle. However, we found no morphological evidence for clathrin mediating endocytosis in these parasites and speculate that they remodelled their vesicular trafficking system to adapt to an intracellular lifestyle
    • 

    corecore