26 research outputs found

    Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration

    Get PDF
    Lung cancer is one of the most common fatal diseases in the developed world. The disease is rarely cured by currently available therapies, with an overall survival rate of ∼10%. Characterizing novel proteins that offer crucial insights into the processes of lung tumour invasion and metastasis may therefore provide much-needed prognostic markers, and influence therapeutic strategies. Aberrant function of the integrin family of heterodimeric cell surface receptors is a common theme in cancer--investigation into novel integrin activity regulators may offer crucial insights into the processes of tumour invasion and metastasis and may reveal insights into potential therapeutic targets. We previously described that depletion of the novel multi-transmembrane domain protein Fam38A, located at the endoplasmic reticulum (ER), inactivates endogenous beta1 integrin affinity, reducing cell adhesion. We now show that depletion of Fam38A, also now known as Piezo1, causes anchorage independence and a switch to a reduced integrin-dependent mode of cell migration/invasion, a novel phenotype for this integrin-regulating protein. Normal lung epithelial cells show increased rates of migration by 2D time-lapse microscopy and increased capacity to invade into matrigel, despite having decreased integrin affinity. We confirm greatly depleted Fam38A expression in small cell lung cancer (SCLC) lines where a form of reduced integrin-dependent migration, i.e. amoeboid migration, is a known phenotype. We propose that loss of Fam38A expression may cause increased cell migration and metastasis in lung tumours

    Serine phosphorylation regulates paxillin turnover during cell migration

    Get PDF
    BACKGROUND: Paxillin acts as an adaptor protein that localizes to focal adhesion. This protein is regulated during cell migration by phosphorylation on tyrosine, serine and threonine residues. Most of these phosphorylations have been implicated in the regulation of different steps of cell migration. The two major phosphorylation sites of paxillin in response to adhesion to an extracellular matrix are serines 188 and 190. However, the function of this phosphorylation event remains unknown. The purpose of this work was to determine the role of paxillin phosphorylation on residues S188 and S190 in the regulation of cell migration. RESULTS: We used NBT-II epithelial cells that can be induced to migrate when plated on collagen. To examine the role of paxillin serines 188/190 in cell migration, we constructed an EGFP-tagged paxillin mutant in which S188/S190 were mutated into unphosphorylatable alanine residues. We provide evidence that paxillin is regulated by proteasomal degradation following polyubiquitylation of the protein. During active cell migration on collagen, paxillin is protected from proteasome-dependent degradation. We demonstrate that phosphorylation of serines 188/190 is necessary for the protective effect of collagen. In an effort to understand the physiological relevance of paxillin protection from degradation, we show that cells expressing the paxillin S188/190A interfering mutant spread less, have reduced protrusive activity but migrate more actively. CONCLUSION: Our data demonstrate for the first time that serine-regulated degradation of paxillin plays a key role in the modulation of membrane dynamics and consequently, in the control of cell motility

    Domestic Water Demand During Droughts in Temperate Climates: Synthesising Evidence for an Integrated Framework

    Get PDF
    In the upcoming years, as the population is growing and ageing, as lifestyle changes create the need for more water and as fewer people live in each household, the UK water sector will have to deal with challenges in the provision of adequate water services. Unless critical action is taken, every area in the UK may face a supply-demand gap by the 2080s. Extreme weather events and variations that alter drought and flood frequency add to these pressures. However, little evidence is available about householders’ response to drought and there are few if any studies incorporating this evidence into models of demand forecasting. The present work lays the groundwork for modelling domestic water demand response under drought conditions in temperate climates. After discussing the current literature on estimating and forecasting domestic water consumption under both ‘normal’ and drought conditions, this paper identifies the limited ability of current domestic demand forecasting techniques to include the many different and evolving factors affecting domestic consumption and it stresses the need for the inclusion of inter and intra household factors as well as water use practices in future demand forecasting models

    Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms

    Get PDF
    Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments

    Screening out irrelevant cell-based models of disease

    Get PDF
    The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell-and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates
    corecore