124 research outputs found

    Constraints on the utility of MnO2 cartridge method for the extraction of radionuclides: A case study using \u3csup\u3e234\u3c/sup\u3eTh

    Get PDF
    Large volume (102–103 L) seawater samples are routinely processed to investigate the partitioning of particle reactive radionuclides and Ra between solution and size-fractionated suspended particulate matter. One of the most frequently used methods to preconcentrate these nuclides from such large volumes involves extraction onto three filter cartridges (a prefilter for particulate species and two MnO2-coated filters for dissolved species) connected in series. This method assumes that the extraction efficiency is uniform for both MnO2-coated cartridges, that no dissolved species are removed by the prefilter, and that any adsorbed radionuclides are not desorbed from the MnO2-coated cartridges during filtration. In this study, we utilized 234Th-spiked coastal seawater and deionized water to address the removal of dissolved Th onto prefilters and MnO2-coated filter cartridges. Experimental results provide the first data that indicate (1) a small fraction of dissolved Th (\u3c6%) can be removed by the prefilter cartridge; (2) a small fraction of dissolved Th (\u3c5%) retained by the MnO2 surface can also be desorbed, which undermines the assumption of uniform extraction efficiency for Th; and (3) the absolute and relative extraction efficiencies can vary widely. These experiments provide insight on the variability of the extraction efficiency of MnO2-coated filter cartridges by comparing the relative and absolute efficiencies and recommend the use of a constant efficiency on the combined activity from two filter cartridges connected in series for future studies of dissolved 234Th and other radionuclides in natural waters using sequential filtration/extraction methods

    Possible link between Earth's rotation rate and oxygenation

    Get PDF
    The biotic and abiotic controls on major shifts in atmospheric oxygen and the persistence of low-oxygen periods over a majority of Earth’s history remain under debate. Explanations of Earth’s stepwise pattern of oxygenation have mostly neglected the effect of changing diel illumination dynamics linked to daylength, which has increased through geological time due to Earth’s rotational deceleration caused by tidal friction. Here we used microsensor measurements and dynamic modelling of interfacial solute fluxes in cyanobacterial mats to investigate the effect of changing daylength on Precambrian benthic ecosystems. Simulated increases in daylength across Earth’s historical range boosted the diel benthic oxygen export, even when the gross photosynthetic production remained constant. This fundamental relationship between net productivity and daylength emerges from the interaction of diffusive mass transfer and diel illumination dynamics, and is amplified by metabolic regulation and microbial behaviour. We found that the resultant daylength-driven surplus organic carbon burial could have shaped the increase in atmospheric oxygen that occurred during the Great and Neoproterozoic Oxidation Events. Our suggested mechanism, which links the coinciding increases in daylength and atmospheric oxygen via enhanced net productivity, reveals a possible contribution of planetary mechanics to the evolution of Earth’s biology and geochemistry

    Intense winter heterotrophic production stimulated by benthic resuspension

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109851/1/lno20004571672.pd

    Production and Fate of Transparent Exopolymer Particles in the Ocean

    Get PDF
    The production and fate of transparent exopolymer particles (TEP) have been investigated in various oceanic regions (tropical, temperate, and polar), from the sea surface microlayer (SML) to the deep ocean. Accumulation of TEP within the mixed layer was observed even in the absence of phytoplankton blooms, indicating abiotic processes are important in TEP production. The abiotic TEP aggregation rates measured in the tropical and temperate North Pacific and the Arctic Ocean averaged between 8 and 12 ÎŒmol C L-1 d-1. Depth profiles from under sea ice in the Arctic revealed the highest TEP concentrations, potentially released by sympagic algal activity at the bottom of the sea ice. The aggregation rates in the SML, the interfacial layer between the ocean and atmosphere, were generally enhanced over those in the bulk surface waters by factors of 2 to 30. This finding further strengthens a developing consensus on the gelatinous nature of the SML, which will also affect microbial life, light penetration, and surface wave properties. We present a conceptual model implying that abiotic aggregation is an important factor for TEP production in the ocean, in particular in sea surface microlayers, while consumption by zooplankton and protists recycle TEP, providing a new pool of dissolved precursor material. Overall, TEP is recycled within the water column through heterotrophic grazing and degradation, providing a new pool of TEP precursor materials, while enhanced aggregation rates of TEP in the SML indicates the importance of this thin surface film in the marine carbon cycle

    Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat

    Full text link
    Cyanobacteria are renowned as the mediators of Earth’s oxygenation. However, little is known about the cyanobacterial communities that flourished under the low‐O 2 conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low‐O 2 conditions. Here, venting groundwater rich in sulfate and low in O 2 supports a unique benthic ecosystem of purple‐colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O 2 , suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, 14 C‐bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low‐diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale , for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria . Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low‐O 2 cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90535/1/j.1472-4669.2012.00322.x.pd

    Differential Response of High-Elevation Planktonic Bacterial Community Structure and Metabolism to Experimental Nutrient Enrichment

    Get PDF
    Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes

    The first horse herders and the impact of early Bronze Age steppe expansions into Asia

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this recordThe file includes the article, supplementary material and additional supplementary materialThe published version of the supplementary materials are at http://science.sciencemag.org/content/suppl/2018/05/08/science.aar7711.DC1Part of the additional supplementary materials for this article are in ORE at http://hdl.handle.net/10871/32792The Yamnaya expansions from the western steppe into Europe and Asia during the Early Bronze Age (~3000 BCE) are believed to have brought with them Indo-European languages and possibly horse husbandry. We analyze 74 ancient whole-genome sequences from across Inner Asia and Anatolia and show that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya. Our results also suggest distinct migrations bringing West Eurasian ancestry into South Asia before and after but not at the time of Yamnaya culture. We find no evidence of steppe ancestry in Bronze Age Anatolia from when Indo-European languages are attested there. Thus, in contrast to Europe, Early Bronze Age Yamnaya-related migrations had limited direct genetic impact in Asia.The study was supported by the Lundbeck Foundation (EW), the Danish National Research Foundation (EW), and KU2016 (EW). Research at the Sanger Institute was supported by the Wellcome Trust (grant 206194). RM was supported by an EMBO Long-Term Fellowship (ALTF 133-2017). JK was supported by the Human Frontiers Science Program (LT000402/2017). Botai fieldwork was supported by University of Exeter, Archeology Exploration Fund and Niobe Thompson, Clearwater Documentary. AB was supported by NIH grant 5T32GM007197-43. GK was funded by Riksbankens Jubileumsfond and European Research Council. MP was funded by Netherlands Organization for Scientific Research (NWO), project number 276-70-028, IU was funded by the Higher education commission of Pakistan. Archaeological materials from Sholpan and Grigorievka were obtained with partial financial support of the budget program of the Ministry of Education and Science of the Republic of Kazakhstan “Grant financing of scientific research for 2018-2020” No. AP05133498 “Early Bronze Age of the Upper Irtysh”
    • 

    corecore