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Constraints on the utility of MnO2 cartridge method for the
extraction of radionuclides: A case study using 234Th

M. Baskaran
Department of Geology, Wayne State University, Detroit, Michigan 48202, USA (baskaran@wayne.edu)

P. W. Swarzenski
Pacific Science Center, U.S. Geological Survey, 400 Natural Bridges Drive, Santa Cruz, California 95060, USA

B. A. Biddanda
Annis Water Resources Institute, Lake Michigan Center, Grand Valley State University, Muskegon, Michigan 49441,
USA

[1] Large volume (102–103 L) seawater samples are routinely processed to investigate the partitioning of
particle reactive radionuclides and Ra between solution and size-fractionated suspended particulate matter.
One of the most frequently used methods to preconcentrate these nuclides from such large volumes
involves extraction onto three filter cartridges (a prefilter for particulate species and two MnO2-coated
filters for dissolved species) connected in series. This method assumes that the extraction efficiency is
uniform for both MnO2-coated cartridges, that no dissolved species are removed by the prefilter, and that
any adsorbed radionuclides are not desorbed from the MnO2-coated cartridges during filtration. In this
study, we utilized 234Th-spiked coastal seawater and deionized water to address the removal of dissolved
Th onto prefilters and MnO2-coated filter cartridges. Experimental results provide the first data that
indicate (1) a small fraction of dissolved Th (<6%) can be removed by the prefilter cartridge; (2) a small
fraction of dissolved Th (<5%) retained by the MnO2 surface can also be desorbed, which undermines the
assumption of uniform extraction efficiency for Th; and (3) the absolute and relative extraction efficiencies
can vary widely. These experiments provide insight on the variability of the extraction efficiency of MnO2-
coated filter cartridges by comparing the relative and absolute efficiencies and recommend the use of a
constant efficiency on the combined activity from two filter cartridges connected in series for future studies
of dissolved 234Th and other radionuclides in natural waters using sequential filtration/extraction methods.

Components: 5915 words, 3 figures, 3 tables.

Keywords: 234Th; MnO2 cartridge method; 234Th/238U disequilibrium; actinide chemical procedure; collection efficiency;

particle reactive tracers.

Index Terms: 4860 Oceanography: Biological and Chemical: Radioactivity and radioisotopes; 4866 Oceanography:

Biological and Chemical: Sorptive scavenging; 4825 Oceanography: Biological and Chemical: Geochemistry.

Received 25 November 2008; Revised 2 March 2009; Accepted 16 March 2009; Published 22 April 2009.

Baskaran, M., P. W. Swarzenski, and B. A. Biddanda (2009), Constraints on the utility of MnO2 cartridge method

for the extraction of radionuclides: A case study using 234Th, Geochem. Geophys. Geosyst., 10, Q04011,

doi:10.1029/2008GC002340.

G3G3Geochemistry
Geophysics

Geosystems

Published by AGU and the Geochemical Society

AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES

Geochemistry
Geophysics

Geosystems

Technical Brief

Volume 10, Number 4

22 April 2009

Q04011, doi:10.1029/2008GC002340

ISSN: 1525-2027

Click
Here

for

Full
Article

Copyright 2009 by the American Geophysical Union 1 of 9

http://dx.doi.org/10.1029/2008GC002340


1. Introduction

[2] The distribution of particle reactive radionu-
clides such as Th and 210Pb in the U/Th series in
seawater, have provided a wealth of information on
marine particle dynamics. The activities of many of
the short-lived U/Th series radionuclides in seawa-
ter are so dilute that most of these nuclides require
considerable preconcentration prior to their radio-
chemical separation and analyses. Several methods
have been developed to preconcentrate short-lived
radionuclides from natural waters and include
coprecipitation with Fe and Al hydroxides, and
selective sorption on to Fe/MnO2-coated surfaces.
One of the widely used preconcentration methods
for particulate and dissolved Th is to pass large
volumes of seawater through a set of prefilters to
retain particulate matter while the dissolved con-
stituents are adsorbed onto two MnO2-coated car-
tridges [e.g., Buesseler et al., 1992; Baskaran et
al., 1993, 2003; Colley and Thomson, 1994;
Cochran et al., 1987, 1995; Moran et al., 1997;
Charette and Moran, 1999; Rutgers van der Loeff
and Moore, 1999; Benitez-Nelson et al., 2000; Guo
et al., 2002; Rutgers van der Loeff et al., 2006].
Advantages of this method include the simulta-
neous measurement of a suite of gamma-emitting
radionuclides, such as 234Th, 210Pb and Ra isotopes
and selective removal of Th but not U which
eliminates extensive chemical separation of U from
Th isotopes in the field [e.g., Baskaran et al., 1993;
Baskaran and Santschi, 2002]. Furthermore, in
studies that involve size-fractionated particulate
Th determination, this method allows the filtration
of large volumes of water (103–104 L) to assess the
distribution of Th in various class-sized particles
[e.g., Guo et al., 2002]. Key assumptions in the
filter cartridge method include (1) the prefilter does
not sorb any dissolved Th and retains quantitative-
ly particulate matter of sizes above the filter cutoff,
(2) the two MnO2 filters extract Th in a uniform
manner (i.e., a constant percentage of the entering
Th is removed by each MnO2 fiber), and (3) any
sorbed Th on the MnO2-coated cartridge filters
does not desorb during filtration. However, these
assumptions have not been rigorously tested, al-
though variations in reported extraction efficiencies
have been summarized in detail [Rutgers van der
Loeff et al., 2006]. In this study, we present results
from a series of experiments that specifically
address the retention of dissolved Th onto prefilters
and MnO2-coated filter cartridges, release of
sorbed Th from these MnO2 filter cartridges and
variations in the extraction efficiencies of the

MnO2-coated cartridge filters. This study is rele-
vant to other nuclides that use three-cartridge
method (one cartridge filter for particulate followed
by two cartridge filters connected in series for
radionuclides such as Ra, 210Pb, 137Cs, etc).

2. Materials and Methods

[3] Parameters that can cause variations in the
extraction efficiency of MnO2-coated cartridge
filters include variations in: filtration volumes
(sorption site density limiting the extraction effi-
ciency), flow rates (changes in the contact time
between seawater and MnO2 surface), cartridge
preparation techniques, loss of MnO2 and Th from
MnO2 filter during filtration, retention of particu-
late Th in prefilter and electrostatic repulsion
between the MnO2 surface and colloid-bound Th
[Buesseler et al., 2001; Rutgers van der Loeff et al.,
2006]. For the following extraction efficiency
experiments, we kept the volumes and flow rates
constant. Thus the variations on the absolute ex-
traction efficiencies in the MnO2-coated cartridges
due to changes in the preparation of MnO2 car-
tridges, the amount of dissolved Th removed by the
prefilter and loss of sorbed Th from MnO2-coated
filter cartridges could be quantified.

2.1. Preparation of Filter Cartridges

[4] The raw filters (25 � 7 cm; polypropylene
fiber, Johnson Filtration, Amarillo, TX, Model:
JP0.5R10P) were first cleaned by soaking a batch
of 12 cartridges in 20-L plastic buckets at �60�C
for about 12 h sequentially in each of the follow-
ing: (1) 2% Micro cleaning solution, (2) 2 M HCl,
(3) 0.5 NaOH, and (4) 2 M HNO3. The filters were
rinsed in tap water before and after soaking them in
cleaning solutions until the pH of the wash solution
stabilized around �7. The residual ash of a prefilter
(at 500�C for 6 h) is <0.1% of its original weight
(�150 g). Each precleaned filter was then soaked
in a saturated KMnO4 solution (250 g KMnO4/L
H2O) in a plastic container at �70�C. The soaking
time in the KMnO4 for the dark (D), normal (N)
and light (L) cartridges were 24, 12 and 6 h,
respectively. This counting procedure produced
cartridges with MnO2 weights ranging from 0.1
to 10% of the total weight of the prefilter car-
tridges. After the KMnO4 bath, one batch of 6
cartridges was thoroughly washed with tap water.
This water flow was connected directly to two
Dark MnO2-coated cartridges to remove any radio-
nuclides and we periodically verified in blank
cartridges that there was no blank 234Th.
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2.2. Milking of 234Th

[5] Thorium-234 spike was obtained by passing a
uranyl nitrate solution through two large concen-
trated HCl-conditioned columns (Dowex-1 anion
exchange column with 12 ml resin in each column;
AG 1-X4, 100–200 mesh, chloride form) sequen-
tially in order to quantitatively separate U from Th.
The amount of U loaded onto the column and the
saturation capacity of the anion exchange resin was
taken into consideration in deciding the amount of
resin needed to separate 238U and 234Th. This 234Th
fraction was subsequently isolated from impurities
using an 8 M HNO3 conditioned Dowex-1 anion
exchange column. Thorium retained on the resin
beads was eluted with MILLI-Q water. The puri-
fied 234Th was evaporated to dryness and oxidized
with concentrated HNO3 twice, to destroy any
organic matter that might have been introduced
from the elution of the last resin column. One ml of
the 234Th spike was taken periodically over a
period of one half-life of 234Th and assayed by
gamma counting [Baskaran et al., 2003].

2.3. Extraction Efficiency Experiment

[6] For this experiment, 100L of seawater for each
of the 11 experiments was collected from one site
in Tampa Bay, Florida (salinity = 23.89) and
initially prefiltered to remove the suspended par-
ticulate matter through a precleaned polypropylene
filter cartridge (0.5 mm median pore size). In three
sets of experiments, the prefiltered water samples
were kept under UV light for 24 h to destroy a
major portion of dissolved organic carbon (DOC).
Changes in DOC concentrations were determined
by high-temperature (680�C) oxidation with a

Shimadzu TOC 5000 carbon analyzer [Benner et
al., 1997].

[7] One milliliter of pH-neutralized spike (29,048
dpm/ml 234Th) was added to the sample, stirred
vigorously for 30 min, and then allowed to equil-
ibrate for 2 h. The dissolved 234Th produced radio-
genically from 100 L of seawater was calculated to
be �1% and thus ignored. One could argue
whether equilibration was reached when the sam-
ple was allowed to equilibrate for 2 h, but it is of
little relevance for this experiment studying whether
retention and extraction equilibration with seawater
is reached or not. After 2 h, the water sample was
filtered through a manifold consisting of a set of
preassigned cartridge filters (care was exercised in
ensuring no bypass of water without identical con-
tact with each of the filter). Details on what filters
were used, their makeup and other details are given
in Tables 1 and 2. None of the cartridges were
rinsed with distilled water after filtration. The max-
imum saltwater retained in the prefilter could con-
tribute up to�6–7 g of salt (corresponding to about
250 ml of salt water), while the amount of salt
retained on the MnO2-coated filter cartridges were
found to be negligible, implying that no salt water
was retained in the pores and are completely closed
with MnO2. The fibers from extractor cartridges
were cut away from the inert cartridge cores, packed
into high-temperature-resistant crucibles, and ashed
at 500�C for �6 h. The homogenized ash was
packed into a gamma vial and quantified using a
NIST- and IAEA SRM-calibrated gamma ray spec-
trometer (U standard from NIST for 234Th and
RGU-1 from IAEA for 234Th). Errors reported
for 234Th are the propagated errors arising from

Table 1. Extraction Efficiency Experimental Conditionsa

Experiment
F1: Type and
Date Made

F2: Type and
Date Made

F3: Type and
Date Made

F4: Type and
Date Made

F5: Type and
Date Made

SET-1 D: 19 Jan 2005 D: 19 Jan 2005 D: 19 Jan 2005 none none
SET-2 PF: Mar 2004 none none none none
SET-3 N: 12 Aug 2003 N: 12 Aug 2003 N: 8 Aug 2003 none none
SET-4 N: 12 Aug 2003 N: 12 Aug 2003 N: 12 Aug 2003 none none
SET-5 D: 28 Aug 2003 PF: 11 Mar 2004 D: 28 Aug 2003 PF: 11 Mar 2004 none
SET-6 L: 19 Aug 2003 PF: 9 Mar 2004 L: 19 Aug 2003 PF: 9 Mar 2003 L: 18 Aug 2003
SET-7 N: 12 Mar 2003 PF: 6 Mar 2004 N: 12 Mar 2004 PF: 6 Mar 2004 N: 11 Mar 2004
SET-8 L: 18 Aug 2003 D: 19 Jan 2005 PF: 9 Mar 2004 none none
SET-9 D: 19 Jan 2005 L: 19 Aug 2003 PF: 11 Mar 2004 none none
SET-10 N: 11 Mar 2004 N: 11 Mar 2004 N: 18 Aug 2003 none none
SET-11 D: 19 Jan 2005 D: 19 Jan 2005 D: 26 Jun 2005 none none
SET-12 L: 12 Aug 2003 L: 12 Aug 2003 L: 11 Aug 2003 none none

a
D, dark (24 h coating); N, normal (12 h coating); L, light (6 h coating); PF, prefilter (dates when they were cleaned); F1, F2, . . ., F5 refer to the

filter cartridges connected serially from inlet to outlet. Salinity of the water used: 23.89; flow rate: 4–5 dpm L–1; In all experiments except SET-4
(deionized water, 48 L), 100 L water was used.

Geochemistry
Geophysics
Geosystems G3G3

baskaran et al.: constraints on utility of mno
2

cartridge method 10.1029/2008GC002340baskaran et al.: constraints on utility of mno
2

cartridge method 10.1029/2008GC002340

3 of 9



Table 2. The 234Th Activities and Absolute and Relative Efficiency for the Extraction Efficiency Experiment

Filter Color of Filtera
DOCb

(ppm)
Flow Rate
(dpm L�1)

Total Ash
Weight (g)

234Th Total
Activity (dpm)

Absolute
Efficiencyc (%)

Relative
Efficiencyd (%)

SET-I
F1 D 4.74 4–5 24.993 28,336 ± 384 97.5 96.9
F2 D 4–5 39.170 883 ± 37 – 85.5
F3 D 4–5 36.722 128 ± 27 – –

SET-II
PF PF 4.64 4–5 7.795 1104 ± 17 – –

SET-III
F1 N 4.64 4–5 8.270 25,882 ± 362 89.1 88.7
F2 N 4–5 3.250 2,912 ± 32 – 76.9
F3 N 4–5 2.218 673 ± 12 – –

SET-IV
F1 N 0.50 4–5 4.052 23,472 ± 279 80.8 88.7
F2 N 4–5 2.212 2655 ± 37 99.1
F3 N 4–5 8.746 237 ± 11

SET-V
F1 D 4.70 4–5 13.293 26,490 ± 354 91.2 87.5
PF1 PF 4–5 10.444 530 ± 13
F2 D 4–5 9.274 3320 ± 67
PF2 PF 4–5 7.741 277 ± 11

SET-VI
F1 L 4.13 4–5 2.279 21122 ± 140 72.7 77.5
PF1 PF 4–5 1.465 665 ± 23 – 71.4
F2 L 4–5 2.827 4747 ± 51
PF2 PF 4–5 8.012 318 ± 18
F3 L 4–5 7.847 1359 ± 21

SET-VII
F1 N 4.37 4–5 2.351 17,677 ± 146 60.9 73.6
PF1 PF 4–5 2.544 544 ± 19
F2 N 4–5 2.535 4668 ± 44 – 65.2
PF2 PF 4–5 7.885 1192 ± 19
F3 N 4–5 6.990 1626 ± 20

SET-VIII
F1 L 4.36 4–5 3.480 18,170 ± 147 62.6 76.7
F2 D 4–5 30.455 4240 ± 90
PF PF 4–5 7.963 238 ± 21

SET-IX
F1 D 3.95 4–5 21.58 24,361 ± 370 84.8 83.9
F2 L 4–5 2.692 3715 ± 37
PF PF 4–5 8.351 233 ± 11

SET-X
F1 N 2.19 4–5 2.161 30,068 ± 264 103.5 80.5
F2 N 4–5 3.617 5863 ± 61 49.2
F3 N 4–5 3.119 2979 ± 57

SET-XI
F1 D 2.12 4–5 14.483 23,360 ± 396 80.4 73.8
F2 D 4–5 38.136 6114 ± 145 76.6
F3 D 4–5 11.148 1433 ± 41

SET-XII
F1 L 2.59 4–5 2.317 14,711 ± 113 50.6 82.7
F2 L 4–5 1.804 2544 ± 25 36.1
F3 L 4–5 2.356 1626 ± 21

a
D, deep or dark as in Table 1 footnote (36 h); L, light (6 h); N, normal (12 h) soaking in hot KMnO4 bath; PF, precleaned prefilter.

b
Average of three samples, one collected before filtration started, one after 1/3 of filtration and the third after 2/3 filtration (1 ppm = 83.3 mM).

c
The absolute extraction efficiency was calculated using equation (1).

d
The relative extraction efficiency was calculated using equation (5).
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counting statistics and calibration of the detector
and 234Th spike.

3. Results and Discussion

3.1. DOC Concentrations

[8] The average concentration of dissolved organic
carbon (DOC) in 7 samples was found to be 4.4 ±
0.3 ppm (range: 4.0–4.7 ppm; 1 ppm = 83.3 mM).
The concentration of DOC after UV irradiation
ranged from 2.12 to 2.59 ppm, with a mean value
of 2.30 ppm, indicating about 54% of DOC is lost
because of UV irradiation.

3.2. Variations in the Ash Weight

[9] We assumed that the cartridge ash weight is a
reasonable proxy of the amount of MnO2 coated on
the fiber (Table 2). The ash weight varied consid-
erably within one batch (e.g., in batch made on 19
January (dark coating): 14.48 to 39.17 g (mean =
29.36 g, n = 7); light coating (L): 1.80 to 7.85 g;
mean = 3.20 g (n = 8); normal coating (N): 2.16 to
8.27 g, mean = 4.13 g, n = 12). Although all 12
cartridges in a batch were treated the same way and
they were constantly moved around in the KMnO4

bath, the possibility of nonuniform coating still
exists and this can be due to factors such as
location of a cartridge in the bath, contact with
the precipitated KMnO4 crystals, distance from the
heating element(s), rate of mixing of the heated
solution in the bath, etc., under which the car-
tridges were soaked in the KMnO4 bath. Mann et
al. [1984] also reported that the polypropylene
filters do not impregnate uniformly with MnO2.
The question as to whether the ash content (mea-

sure of the amount of sorption sites) is related to
the absolute or relative extraction efficiency of Th
is discussed below.

3.3. Retention of Dissolved and Desorbed
234Th Onto Prefilter Cartridges

[10] Although prefilter (PF) cartridges have been
used extensively to retain particulate matter, no
systematic studies have addressed if any dissolved
234Th was retained by the prefilter. In SET-II, we
passed 234Th spiked seawater through a PF and
found 3.8% of 234Th was retained by the prefilter.
While the nature and composition in the coastal
water can be different than open ocean water, a Th
colloid complex in the dissolved phase could play
an important role in the removal of dissolved Th.
In addition, when seawater is passed through
MnO2-coated cartridges, it is not known if any
Th-laden MnO2 particles can desorb and subse-
quently bleed through to the next cartridge. This
could contribute to observed variable extraction
efficiencies. To evaluate this, we placed prefilters
in between MnO2-coated cartridges (Tables 1–3)
and our results indicate that 0.8 to 4.1% (mean:
1.7%, n = 8; Table 3) of the total 234Th was sorbed
onto these prefilters (Tables 1 and 2). Since the
water was filtered through a 0.5 mm prefilter
cartridge, we attribute this to the release of either
Th-containing MnO2 particles or fractional remov-
al of dissolved Th. A comparison of the ratios of
the activities in the prefilter to those in the previous
MnO2 filter (FPF/Mn) suggests that the FPF/Mn

varied from 2.0% to 8.3% (except one with a value
of 25.3%). We are unable to unequivocally resolve
whether the adsorbed Th on the prefilter is derived
from MnO2 fiber or dissolved Th passing through
MnO2 filter. Since dissolved Th goes through the
first PF prior to entering a MnO2 filter, it is
presumed that ‘‘sorbable Th’’ is removed in the
first PF and Th collected on the PF placed in
between MnO2-coated filter cartridges is likely
derived from the desorption of Th from the MnO2-
coated filter. If Th is derived from the MnO2

cartridge, then this could contribute to the variation
in absolute efficiency ( = activity retained in the
filter/activity entering into the filter) between first
and second MnO2 filter cartridges.

[11] Recent controversy on the overestimation of
extraction efficiencies (and hence underestimation
of dissolved activities) led to the following obser-
vations [Cai et al., 2006, 2008; Hung et al., 2008]:

[12] 1. Larger pore sizes result in lower efficiencies
for a given flow rates: while the raw filter will have

Table 3. Activity of and Fraction of 234Th Retained in
the Prefilter Cartridges

Experiment

234Th Activity
(dpm) % of Totala

FPF/Mn
b

(%)

SET-II-PF 1104 ± 17 3.8 -
SET-V-PF1 530 ± 13 1.8 2.0
SET-V-PF2 277 ± 11 1.0 8.3
SET-VI-PF1 665 ± 23 2.3 3.1
SET-VI-PF2 318 ± 18 1.1 6.7
SET-VII-PF1 544 ± 19 1.9 3.1
SET-VII-PF2 1192 ± 19 4.1 25.3
SET-VIII-PF 238 ± 21 0.8 5.6
SET-IX-PF 233 ± 11 0.8 6.3

a
Total 234Th added in the experiment = 29048 dpm (details in

section 2).
b
FPF/Mn = activity in PF/Activity of 234Th in the MnO2-coated

cartridge placed prior to the PF.
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distinct pore size, soaking in saturated KMnO4 will
result in filling of those pore spaces to a large
extent and hence the pore sizes will be altered.
Thus, relationship between pore sizes and extrac-
tion efficiency is not anticipated. The differences in
the amount of residual salt found in the PF and
MnO2 filters support this (section 2.3). On the
other hand, the flow rate is a measure of the contact
time of dissolved 234Th and MnO2 surface and
could affect the extraction efficiency.

[13] 2. 234Th deficit observed at deeper depths
(>500 m [Cai et al., 2008, and references therein])
could be either due to sampling and analytical
artifacts and/or real oceanographic phenomenon
that remains undocumented. Even with the small-
volume MnO2 precipitation method, high 234Th
values have been reported (e.g., at 52 m: 2.45 ±
0.09 dpm L�1, with 234Th/238U = 1.01 ± 0.04; at
110 m: 2.76 ± 0.10 dpm L�1, with 234Th/238U =
1.13 ± 0.04; at 290 m: 3.52 ± 0.13 dpm L�1, with
234Th/238U = 1.46 ± 0.05 [Cai et al., 2008]).
Extremely careful and rigorously tested sampling
and analytical protocols will be needed to address
this issue and resolve the new oceanographic
phenomenon from analytical artifacts.

3.4. Derivation of the Relative Extraction
Efficiency

[14] A schematic of the five-cartridge filtration
setup and the corresponding activity is shown in
Figure 1. If we assume AIN to be the initial activity
of dissolved 234Th entering the first MnO2 filter
cartridge, Ai and Aj are the activities in the ith and
jth cartridges (i = 1–5 and j = i–1). The absolute
extraction efficiency (hi) in the ith cartridge can be
derived as follows:

hi ¼ Ai
�100= AIN �

X
Aj

� �
ð1Þ

h1 ¼ A1
�100=AIN ð2Þ

h2 ¼ A2
�100= AIN � A1ð Þ ð3Þ

for uniform extraction efficiency in the first two
cartridge filters (h1 = h2). Therefore,

A1=AIN ¼ A2= AIN � A1ð Þ

or AINA2 ¼ AINA1 � A2
1 ð4Þ

or AIN ¼ A2
1= A1 � A2ð Þ ¼ A1= 1� A2=A1ð Þ ð5Þ

Equation (5) defines the relative extraction effi-
ciency and is also the standard equation used to
determine Th activity. The relative extraction
efficiency given by the term (1 � A2/A1) will
yield a negative efficiency if A2 > A1.

3.5. Variations in Relative Extraction
Efficiency

[15] The relative extraction efficiency in percent ( =
100*(1 � F2/F1)) calculated using equation (5) for
successive pairs of MnO2-coated cartridges is pre-
sented in Table 2. The absolute efficiency was
calculated only for the first MnO2 filter while the
relative efficiency was calculated for two sets of
successive ones. The relative efficiency varied from
65.2 to 99.1% (excluding two values that are less
than 50%, Table 2), similar to highly varying inter-
sample extraction efficiencies reported in literature

Figure 1. Filtration assembly with absolute extraction efficiency equations.

Figure 2. Relative efficiency versus absolute efficiency.
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(summarized byHung et al. [2008]; in a small subset
of samples, low efficiencies have also been reported;
e.g.,Cochran et al. [1995], less than 50%; Baskaran
et al. [2003], less than 65%; and Cai et al. [2006],
less than 60% and some negative values due to
activity in F2 > F1). From such studies, it is evident
that �10% (±1 s) variations in the reported effi-
ciencies are common. In all MnO2-coated cartridges
connected in series, the relative efficiency is much
more variable (36.1 to 99.1%) than the absolute
efficiency (50.6 to 103.5%, Table 2). Thus, it is
critical that we evaluate the variations on the
individual absolute extraction efficiency of these
cartridges.

3.6. Variations in the Absolute Extraction
Efficiency and Comparison With Relative
Efficiency

[16] An assumption that the absolute extraction
efficiency (% = 100*(activity retained/activity go-
ing into the filter cartridge)) in the first and second
MnO2 extractor cartridges to be the same (h1 = h2)
implies that the absolute and relative extraction
efficiency should yield the same value. The relative
extraction efficiency in the first two filter cartridges
varied between 49.2 to 99.1% (excluding one light-
coated cartridge, SET-XII-F2, Table 2). In 5 of the
7 experiments, the relative extraction efficiency in
first-second MnO2 pair was higher than that in
second-third pair. A plot of the relative efficiency
plotted against the absolute efficiency (Figure 2),
suggests that there is no significant correlation
between the relative and absolute efficiency. Coast-
al waters are generally enriched with organic
colloidal material and it is likely that some of the
spike added in the water readily forms a complex
with the colloidal organic matter that is not retained

uniformly by the filter cartridges. If about 1–10%
of the total 234Th added becomes colloid-bound
234Th and passes through the first cartridge, we can
typically have absolute efficiencies similar to the
values reported in this study. However, if varying
amounts (>10%) of the colloidal 234Th are retained
in subsequent cartridges, then the absolute and
relative efficiencies will be highly variable. In
SET-X through XII, we conducted a set of experi-
ments with water exposed to UV rays where the
DOC concentrations decreased by about 50%
(Table 2). The relative efficiency in the Dark and
Normal cartridges varied between 49 and 81%
(excluding the Light cartridges in SET-XII). Thus,
complexation of Th with UV degradable colloids
does not appear to affect the variations in absolute
and relative efficiencies. While previous studies
have speculated that the organic complexation of
Th could result in variations in extraction efficiency
of Th, so far no experimental evidence has been
published [Cai et al., 2006; Rutgers van der Loeff
et al., 2006; Santschi et al., 2006]. With our data,
we are unable to exclude the possibility that only
UV-resistant refractory DOM complexes with Th
and is removed on to the filter cartridges. In the
present case, the nature and composition of the
colloidal material likely remained the same in all
the water samples used in this study and hence
the variations appears to suggest that complexation
of Th with colloids is less likely to be the reason
for the observed variations in the extraction effi-
ciency (both absolute and relative). Cai et al. [2008]
hypothesized that colloidal Th is not collected by
MnO2 cartridges, although colloidal Th in the size
range of >1 kD could be as high as 64% (11 to
64%, mean = 20.0%, n = 16 [Santschi et al., 1995]),
most of colloidal Th ought to have been removed
by MnO2-coated cartridges, as mass balance was
found in many of the samples. Other factors such
as the amount of MnO2 coated on the cartridges
(i.e., the rate of reaction between the tracer and
the extractor MnO2), and temperature and dura-
tion of MnO2 impregnation can also affect the
extraction efficiency. However, there is no relation-
ship between the absolute or relative extraction
efficiency and the amount of ash weight of the first
cartridge, although very low absolute efficiencies
are found in low ash weight samples (Figure 3).
A summary of earlier results on the relationship
between extraction efficiency and flow rate through
MnO2 cartridges connected in series is given by
Rutgers van der Loeff et al. [2006]. When the
surface area of the fiber remains unsaturated with
respect to any element of interest, we expect the
volume of water filtration to be independent of the

Figure 3. Extraction efficiency versus ash weight of
the first cartridge (see comment in section 3.6).
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extraction efficiency. It appears that contact time
of the nuclide with MnO2-coated surface in some
cases plays a role while in other cases, the amount
of contact time seems to be independent of the
amount of nuclide extracted. Manganese oxide can
exist in more than one form (a-MnO2, b-MnO2,
g-MnO2, e-MnO2 and l-MnO2) on the surfaces of
the polypropylene matrix and the variations in the
form of MnO2 could also affect the extraction
efficiency, although pyrolusite (b-MnO2) is
expected to be the most common form [Fong et
al., 1994]. So far, the form of MnO2 oxide coated
on the filter has not been determined and/or
reported and remains an unknown.

3.7. Use of Constant Extraction Efficiency
in Calculating Dissolved 234Th

[17] To address the potential error in dissolved
234Th activities from the implied assumption of
uniform extraction efficiency, we evaluated the
possibility of combining the two filters and assum-
ing constant extraction efficiency for the set of two
cartridges. The constant extraction efficiency value
used for a pair is taken to be the average value of
all the relative extraction efficiencies in the two
successive cartridge filters (in our case, calculated
from the cartridges 1 and 2 and cartridges 2 and 3).
The activity of 234Th entering the first cartridge
filter was then calculated as follows:

[18] Activity entering the first cartridge (which is
the activity in the field sample)

¼ A1 þ A2ð Þ= hþ h 1:00� hð Þ½ � ð6Þ

where h is the average of the relative extraction
efficiency (0.842 in our study, average of 12
values; only those values when the MnO2 filters
are next to each other are used (PF next MnO2

filters are not used; values below 50% are
discarded as they are meaningless). The activity
thus obtained is compared to the spike added to the
experiment (i.e., activity entering the first filter
cartridge) in Table 2. It was shown earlier
[Swarzenski and Baskaran, 2004] that in �30%
of the samples (8 out of 25), the activity calculated
using equation (5) assuming uniform extraction
efficiency yielded meaningless values, either
negative or with errors >80% while the activity
calculated using constant extraction efficiency after
combining the two successive cartridges yielded a
much more realistic value. Thus, it appears that use
of constant extraction efficiency on the combined
activity in two filters provide a more meaningful

measure of activity than the value obtained using
the assumption of uniform extraction efficiency.

4. Conclusions

[19] The following results can be summarized from
our extraction efficiency experiments:

[20] 1. Some amount of dissolved and/or desorbed
234Th (although small, <6%) is removed by the
prefilter cartridge. If this is a common occurrence,
then the particulate activities reported in the liter-
ature may be overestimates.

[21] 2. There are indications that some amount of
234Th is also desorbed from the MnO2 cartridges,
although the amount is relatively small (<5%).

[22] 3. There is a relatively large variation in the
absolute efficiency of the first and second filter
cartridges. Thus, the assumption of uniform extrac-
tion efficiency in two cartridges could introduce
error on the value of dissolved 234Th activity.

[23] 4. We suggest using constant extraction effi-
ciency on the combined activity from two filter
cartridges (activities in F1 + F2) connected in series
to obtain a dissolved 234Th activity. The average
value of the relative efficiency from all the car-
tridges could be used as the constant efficiency
value.
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