2,318 research outputs found
Recommended from our members
Search for lepton-flavour-violating decays of Higgs-like bosons.
A search is presented for a Higgs-like boson with mass in the range 45 to 195 GeV/c2 decaying into a muon and a tau lepton. The dataset consists of proton-proton interactions at a centre-of-mass energy of 8 TeV , collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb-1 . The tau leptons are reconstructed in both leptonic and hadronic decay channels. An upper limit on the production cross-section multiplied by the branching fraction at 95% confidence level is set and ranges from 22 pb for a boson mass of 45 GeV/c2 to 4 pb for a mass of 195 GeV/c2
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV
We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) =
200 GeV recorded by the PHENIX experiment and compare with yields in p+p
collisions at the same energy per nucleon-nucleon collision. The measurements
cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high
statistical precision and are compared with two theoretical models: one with
nuclear shadowing combined with final state breakup and one with coherent gluon
saturation effects. To remove model dependent systematic uncertainties we also
compare the data to a simple geometric model. We find that calculations where
the nuclear modification is linear or exponential in the density weighted
longitudinal thickness are difficult to reconcile with the forward rapidity
data.Comment: 449 authors from 66 institutions, 6 pages, 3 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central Au Collisions at =200 GeV
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC)
reports measurements of azimuthal dihadron correlations near midrapidity in
Au collisions at =200 GeV. These measurements
complement recent analyses by experiments at the Large Hadron Collider (LHC)
involving central Pb collisions at =5.02 TeV, which
have indicated strong anisotropic long-range correlations in angular
distributions of hadron pairs. The origin of these anisotropies is currently
unknown. Various competing explanations include parton saturation and
hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies
in Au collisions compared to those seen in Pb collisions at the
LHC. The larger extracted values in Au collisions at RHIC are
consistent with expectations from hydrodynamic calculations owing to the larger
expected initial-state eccentricity compared with that from Pb
collisions. When both are divided by an estimate of the initial-state
eccentricity the scaled anisotropies follow a common trend with multiplicity
that may extend to heavy ion data at RHIC and the LHC, where the anisotropies
are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has
minor changes to text and figures in response to PRL referee suggestions.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Suppression of back-to-back hadron pairs at forward rapidity in d+Au Collisions at sqrt(s_NN)=200 GeV
Back-to-back hadron pair yields in d+Au and p+p collisions at sqrt(s_NN)=200
GeV were measured with the PHENIX detector at the Relativistic Heavy Ion
Collider. Rapidity separated hadron pairs were detected with the trigger hadron
at pseudorapidity |eta|<0.35 and the associated hadron at forward rapidity
(deuteron direction, 3.0<eta<3.8). Pairs were also detected with both hadrons
measured at forward rapidity; in this case the yield of back-to-back hadron
pairs in d+Au collisions with small impact parameters is observed to be
suppressed by a factor of 10 relative to p+p collisions. The kinematics of
these pairs is expected to probe partons in the Au nucleus with low fraction x
of the nucleon momenta, where the gluon densities rise sharply. The observed
suppression as a function of nuclear thickness, p_T, and eta points to cold
nuclear matter effects arising at high parton densities.Comment: 381 authors, 6 pages, 4 figures. Published in Phys. Rev. Lett.
(http://link.aps.org/doi/10.1103/PhysRevLett.107.172301). v3 has minor
changes to match published version
(http://www.phenix.bnl.gov/phenix/WWW/info/pp1/128/PhysRevLett.107.172301)
Plain text data tables for points plotted in figures are publicly available
at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg128_data.htm
Cross section for production via dielectrons in dAu collisions at GeV
We report a measurement of pairs from semileptonic heavy-flavor
decays in Au collisions at GeV. Exploring the mass
and transverse-momentum dependence of the yield, the bottom decay contribution
can be isolated from charm, and quantified by comparison to {\sc pythia} and
{\sc mc@nlo} simulations. The resulting -production cross section is
~mb, which is equivalent to a nucleon-nucleon cross section of
b.Comment: 375 authors, 16 pages, 8 figures, 7 tables, 2008 data. Submitted to
Phys. Rev. C Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV
We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) =
200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity
(-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these
kinematics and as a function of collision centrality (related to impact
parameter for the R_dAu collision). We find that the modification is largest
for collisions with small impact parameters, and observe a suppression
(R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we
observe a suppression for p_T1) for p_T>2
GeV/c. The observed enhancement at negative rapidity has implications for the
observed modification in heavy-ion collisions at high p_T.Comment: 384 authors, 24 pages, 19 figures, 13 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg123_data.htm
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …