2,098 research outputs found

    The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases

    Get PDF
    The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major ‘whole microbiome’ therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, he potential use of FMT in treating other infectious diseases is an area of active research. In this Review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT

    Continental margin subsidence from shallow mantle convection: Example from West Africa

    Full text link
    Spatial and temporal evolution of the uppermost convecting mantle plays an important role in determining histories of magmatism, uplift, subsidence, erosion and deposition of sedimentary rock. Tomographic studies and mantle flow models suggest that changes in lithospheric thickness can focus convection and destabilize plates. Geologic observations that constrain the processes responsible for onset and evolution of shallow mantle convection are sparse. We integrate seismic, well, gravity, magmatic and tomographic information to determine the history of Neogene-Recent (+100 °C providing ∌103 m of support. Beneath the Mauritania basin average excess temperatures are <−100 °C drawing down the lithosphere by ∌102 to 103 m. Up- and downwelling mantle has generated a bathymetric gradient of ∌1/300 at a wavelength of ∌103 km during the last ∌23 Ma. Our results suggest that asthenospheric flow away from upwelling mantle can generate downwelling beneath continental margins

    Observation and Simulation of Solid Sedimentary Flux: Examples From Northwest Africa

    Full text link
    The sedimentary archive preserved at passive margins provides important clues about the evolution of continental topography. For example, histories of African uplift, erosion, and deposition of clastic sedimentary rock provide information about mantle convection. Furthermore, relating histories of uplift and erosion from regions where sediment is generated to measurements of efflux is important for understanding basin evolution and the distribution of natural resources. We focus on constraining Mesozoic to Recent solid sedimentary flux to northwest Africa's passive margin, which today is fed by rivers draining dynamically supported topography. Histories of sedimentary flux are calculated by mapping stratigraphy using seismic reflection and well data courtesy of Tullow Oil Plc and TGS. Stratigraphic ages, conversion from two-way time to depth and compaction, are parameterized using biostratigraphic and check-shot records from exploration, International Ocean Discovery Program and Deep Sea Drilling Project wells. Results indicate that Late Cretaceous to Oligocene (∌100–23 Ma) sedimentary flux decreased gradually. A slight increase in Neogene sedimentary flux is observed, which is concomitant with a change from carbonate to clastic sedimentation. Pliocene to Recent (∌5–0 Ma) flux increased by an order of magnitude. This history of sedimentary flux and facies change is similar to histories observed at other African deltas. To constrain sources of sedimentary flux, 14,700 longitudinal river profiles were inverted to calculate a history of continental uplift. These results were used to parameterize a simple “source-to-sink” model of fluvial erosion and sedimentary efflux. Results suggest that increased clastic flux to Africa's deltas from ∌30 Ma was driven by denudation induced by dynamic support

    The generation and scaling of longitudinal river profiles

    Get PDF
    The apparent success of inverse modeling of continent‐wide drainage inventories is perplexing. An ability to obtain reasonable fits between observed and calculated longitudinal river profiles implies that drainage networks behave simply and predictably at length scales of O(102–103) km and timescales of O(100–102) Ma. This behavior suggests that rivers respond in a predictable way to large‐scale tectonic forcing. On the other hand, it is acknowledged that stream power laws are empirical approximations since fluvial processes are complex, non‐linear, and probably susceptible to disparate temporal and spatial shocks. To bridge the gap between these different perceptions of landscape evolution, we present and interpret a suite of power spectra for African river profiles that traverse different climatic zones, lithologic boundaries, and biotic distributions. At wavelengths ≳ 102 km, power spectra have slopes of −2, consistent with red noise, demonstrating that profiles are self‐similar at these length scales. At wavelengths â‰Č 102 km, there is a cross‐over transition to slopes of −1, consistent with pink noise, for which power scales according to the inverse of wavenumber. Onset of this transition suggests that spatially correlated noise, perhaps generated by instabilities in water flow and by lithologic heterogeneities, becomes more prevalent at wavelengths shorter than ∌100 km. At longer wavelengths, this noise gradually diminishes and self‐similar scaling emerges. Our analysis is consistent with the concept that complexities of river profile development are characterized by an adaptation of the Langevin equation, by which simple advective models of erosion are driven by a combination of external forcing and noise

    The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement

    Get PDF
    BACKGROUND: Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat. METHODOLOGY/PRINCIPAL FINDINGS: We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance. CONCLUSIONS/SIGNIFICANCE: Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints

    Pulmonary valve endocarditis caused by right ventricular outflow obstruction in association with sinus of valsalva aneurysm: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Right-sided infective endocarditis is uncommon. This is primarily seen in patients with intravenous drug use, pacemaker or central venous lines, or congenital heart disease. The vast majority of cases involve the tricuspid valve. Isolated pulmonary valve endocarditis is extremely rare. We report the first case of a pulmonary valve nonbacterial thrombotic endocarditis caused by right ventricular outlflow tract (RVOT) obstruction in association with a large sinus of Valsalva aneurysm.</p> <p>Case presentation</p> <p>A 60-year-old man with a six-week history of fever, initially treated as pneumonia and sinusitis with levofloxacin, was admitted to the hospital with a new onset of a heart murmur. An echocardiogram showed thickening of the pulmonary valve suggestive of valve vegetation. A dilated aortic root and sinus of Valsalva aneurysm measuring at least 6.4 cm were also identified. The patient was empirically treated for infective endocarditis with vancomycin and gentamycin for 28 days. Four months later, the patient underwent resection of a large aortic root aneurysm and exploration of the pulmonary valve. During the surgery, vegetation of the pulmonary valve was confirmed. Microscopic pathological examination revealed fibrinous debris with acute inflammation and organizing fibrosis with chronic inflammation, compatible with a vegetation. Special stains were negative for bacteria and fungi.</p> <p>Conclusion</p> <p>This is the first case report of a pulmonary valve nonbacterial endocarditis caused by RVOT obstruction in association with a sinus of Valsalva aneurysm. We speculate that jets created by the RVOT obstruction and large sinus of Valsalva aneurysm hitting against endothelium of the pulmonary valve is the etiology of this rare nonbacterial thrombotic endocarditis.</p

    A systematic review on health resilience to economic crises

    Get PDF
    Background The health effects of recent economic crises differ markedly by population group. The objective of this systematic review is to examine evidence from longitudinal studies on factors influencing resilience for any health outcome or health behaviour among the general population living in countries exposed to financial crises. Methods We systematically reviewed studies from six electronic databases (EMBASE, Global Health, MEDLINE, PsycINFO, Scopus, Web of Science) which used quantitative longitudinal study designs and included: (i) exposure to an economic crisis; (ii) changes in health outcomes/behaviours over time; (iii) statistical tests of associations of health risk and/or protective factors with health outcomes/behaviours. The quality of the selected studies was appraised using the Quality Assessment Tool for Quantitative Studies. PRISMA reporting guidelines were followed. Results From 14,584 retrieved records, 22 studies met the eligibility criteria. These studies were conducted across 10 countries in Asia, Europe and North America over the past two decades. Ten socio-demographic factors that increased or protected against health risk were identified: gender, age, education, marital status, household size, employment/occupation, income/ financial constraints, personal beliefs, health status, area of residence, and social relations. These studies addressed physical health, mortality, suicide and suicide attempts, mental health, and health behaviours. Women’s mental health appeared more susceptible to crises than men’s. Lower income levels were associated with greater increases in cardiovascular disease, mortality and worse mental health. Employment status was associated with changes in mental health. Associations with age, marital status, and education were less consistent, although higher education was associated with healthier behaviours. Conclusions Despite widespread rhetoric about the importance of resilience, there was a dearth of studies which operationalised resilience factors. Future conceptual and empirical research is needed to develop the epidemiology of resilience

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet
    • 

    corecore