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Abstract9

The apparent success of inverse modeling of continent-wide drainage inventories is per-10

plexing. An ability to obtain reasonable fits between observed and calculated longitudi-11

nal river profiles implies that drainage networks behave simply and predictably at length12

scales of O(102–103) km and timescales of O(100–102) Ma. This behavior suggests that13

rivers respond in a predictable way to large-scale tectonic forcing. On the other hand, it14

is acknowledged that stream power laws are empirical approximations since fluvial pro-15

cesses are complex, non-linear, and probably susceptible to disparate temporal and spatial16

shocks. To bridge the gap between these different perceptions of landscape evolution, we17

present and interpret a suite of power spectra for African river profiles that traverse differ-18

ent climatic zones, lithologic boundaries, and biotic distributions. At wavelengths & 10219

km, power spectra have slopes of −2, consistent with red noise, demonstrating that pro-20

files are self-similar at these length scales. At wavelengths . 102 km, there is a cross-over21

transition to slopes of −1, consistent with pink noise, for which power scales according to22

the inverse of wavenumber. Onset of this transition suggests that spatially correlated noise,23

perhaps generated by instabilities in water flow and by lithologic heterogeneities, becomes24

more prevalent at wavelengths shorter than ∼ 100 km. At longer wavelengths, this noise25

gradually diminishes and self-similar scaling emerges. Our analysis is consistent with the26

concept that complexities of river profile development are characterized by an adaptation27

of the Langevin equation, by which simple advective models of erosion are driven by a28

combination of external forcing and noise.29

Introduction30

It is generally agreed that convective circulation of the Earth’s mantle generates31

and maintains a significant component of surface topography [e.g. Pekeris, 1935; Hager32

& Richards, 1989; Gurnis et al., 2000; Hoggard et al., 2016]. This dynamic topography33

demonstrably varies as a function of time and space. Given the obvious difficulties in di-34

rectly observing patterns of mantle convection, careful quantitative observations of dy-35

namic topography at the present day and throughout the geologic record are of consider-36

able interest. In the continental realm, the way in which landscapes grow and evolve is37

undoubtedly affected by changing patterns of dynamic topography. An important corollary38

is that landscapes are a potentially significant means by which information about these39

patterns can be obtained. A critical stumbling block is that erosional processes responsi-40
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ble for sculpting landscapes are much debated and poorly understood [e.g. Pelletier, 1999;41

Dietrich et al., 2003; Anderson & Anderson, 2010; Ancey et al., 2015].42

At short (i.e. < 100 km) wavelengths, geomorphic studies understandably focus43

on apparently complex, non-linear interactions between climate, precipitation, lithology,44

regolith and biota [e.g. Sklar & Dietrich, 1998, 2001; Perron et al., 2008; Anderson &45

Anderson, 2010]. These interactions are difficult to observe on appropriately long time46

scales. Nonetheless, there is tentative agreement that an empirical stream power law pro-47

vides one practical means for analyzing the geometry of a river profile [e.g. Howard &48

Kerby, 1983; Howard & Dietrich, 1994; Rosenbloom & Anderson, 1994; Weissel & Seidl,49

1998; Whipple & Tucker, 1999; Dietrich et al., 2003; Mudd et al., 2014; Shelef & Hilley,50

2016]. The stream power law can be written in the form51

∂z
∂t
= −vAm

(
∂z
∂x

)n
+U (1)

where z is the height along the river channel as a function of time, t, and distance, x. A52

is the upstream drainage area and U is the rate of uplift. v, m and n are erosional parame-53

ters whose values have to be independently determined [e.g. Stock & Montgomery, 1999].54

Within fluvial channels, it is widely agreed that advective retreat of knickzones predomi-55

nates and that ‘erosional diffusivity’ probably plays a minor role. Numerous geomorphic56

studies concentrate on determining the values of v, m and n from supposedly equilibrated57

river profiles [e.g. Whipple & Tucker, 1999]. The value of n is much debated. If n > 1,58

shock wave behavior, when steeper slopes travel faster as knickpoints recede upstream, is59

expected under certain circumstances [e.g. Pritchard et al., 2009]. It is often argued that60

values of v and m are predominantly moderated by climate and precipitation [e.g. Roe61

et al., 2002]. Hence v and m could vary dramatically as a function of time and space.62

Slope-area analysis of equation (1) is a favored means for determining how v, m and n63

geographically vary [e.g. Schoenbohm et al., 2004].64

From a strictly tectonic perspective, U is the important unknown quantity that varies65

as a function of time and space. Its universal significance has spurred the development of66

non-linear and linear inverse models that solve equation (1) in different ways [e.g. Roberts67

& White, 2010; Goren et al., 2014; Rudge et al., 2015]. Since this inverse problem is often68

underdetermined, the optimal approach is to seek the smoothest distribution of uplift rate69

as a function of space and time that minimizes the misfit between suites of observed and70

calculated river profiles by exploiting a damped nonnegative least squares scheme [Rudge71
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et al., 2015]. For simplicity, these inverse models generally assume that erosional parame-72

ters such as v and m do not vary on geologic timescales and length scales.73

Here, we explore how small-scale geomorphic and large-scale geophysical approaches74

to the difficult problem of landscape modeling might be reconciled. First, we summa-75

rize quantitative insights obtained by inverse modeling of an African drainage inventory.76

We have chosen this continent because it is regarded as having the clearest surface ex-77

pression of convectively generated Neogene dynamic topography [see e.g. Holmes et al.,78

1944; Gurnis et al., 2000; Burke & Gunnell, 2008]. Secondly, we spectrally analyze a suite79

of river profiles from four significant catchments in order to determine how topographic80

power varies as a function of wavelength. In this way, we are attempting to bridge the ob-81

servational gap between small-scale and large-scale processes. Our approach builds upon,82

and complements, the detailed mathematical analysis of Birnir et al. [2001] who show that83

a quantitative treatment of the scaling of fluvial landscapes helps to isolate driving pro-84

cesses that sculpt the Earth’s surface.85

The African Landscape86

Figure 1 shows inferred present-day dynamic topography of Africa. This map can87

be regarded as a proxy for sub-plate convective support and was calculated by scaling88

the long wavelength (> 800 km) free-air gravity anomaly using a constant admittance of89

Z = +40 mGal/km. African dynamic topography is characterized by a series of elevated90

magmatic and amagmatic swells, separated by depressions such as the Congo and Chad91

basins [e.g. Burke & Gunnell, 2008]. In North Africa, prominent magmatic swells include92

the Hoggar, Tibesti and Afar domes. Sub-equatorial Africa is dominated by the amagmatic93

Angolan, Namibian and South African swells. A range of geologic and geophysical obser-94

vations demonstrate that these swells rapidly grew since the start of the Neogene period95

[e.g. Giresse et al., 1984; Partridge et al., 1987; Guiraud et al., 2010; Said et al., 2015;96

Walker et al., 2016]. They are underlain by slow sub-plate shear wave velocity anomalies,97

whose presence implies that these swells are maintained by hotter-than-normal astheno-98

spheric temperatures [e.g. Fishwick, 2010]. In contrast, depressions and basins often co-99

incide with thick (∼ 200 km) lithosphere and/or with fast sub-plate shear wave velocity100

anomalies that are interpretable as convective downwellings [e.g. Fishwick, 2010; Schaef-101

fer & Lebedev, 2013; Hoggard et al., 2016].102
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The drainage pattern of the African continent was extracted from the 90 m Shut-103

tle Radar Topographic Mission (SRTM) dataset using Esri D8 flow-routing algorithms104

and the fidelity of 14,938 recovered river channels was checked using satellite imagery105

(http://srtm.csi.cgiar.org; Tarboton, 1997). Spatial organization of the present-106

day planform of drainage suggests that dynamic topography plays a significant moderating107

control. Thus swells invariably have radial drainage patterns while river channels mean-108

der and diverge across low-lying depressions and basins with numerous instances of inter-109

nal drainage (e.g. Chad basin, Okavango delta). Evidently, the drainage planform closely110

mimics the underlying basin and swell geometry.111

Linear inverse modeling of a subset of 704 river profiles from the complete drainage112

inventory was used to calculate a cumulative uplift history of Africa for the Cenozoic Era113

[Rudge et al., 2015]. There are two significant results, which are summarized in Figure 2.114

First, residual misfit between observed and calculated river profiles is small (i.e. residual115

root mean squared (rms) misfit = 2.4). Secondly, the recovered cumulative uplift history116

is consistent with the history of magmatism, with the flux of clastic sediments to offshore117

deltas, and with the chronology of emergent plateaux and marine terraces [Partridge et al.,118

1987; Burke & Gunnell, 2008; Guiraud et al., 2010]. These surprising results suggest that,119

on timescales of tens of millions of years and on length scales of hundreds to thousands120

of kilometers, an inventory of river profiles have coherent, modelable, signals that are con-121

sistent with spatial and temporal patterns of dynamic topography.122

An inverse modeling strategy makes a series of easily testable assumptions. The123

fundamental, and perhaps least controversial, premise is that the spatial and temporal pat-124

tern of regional uplift moderates long wavelength convexities along river profiles. The125

quality of fit between observed and calculated river profiles suggests that these convexities126

are systematically organized in accordance with a non-linear stream power law (Figure 2).127

Nevertheless, inverse modeling assumes that the drainage planform does not vary signif-128

icantly over time. It implies that advective retreat of knickzones is the dominant physical129

process by which channels evolve since ‘erosional diffusivity’ can range over seven orders130

of magnitude without adversely affecting the solutions obtained [see, e.g., Rosenbloom &131

Anderson, 1994; Roberts & White, 2010]. Inverse modeling algorithms assume that val-132

ues of v and m are more or less constant and show that optimal fits between a suite of133

observed and calculated river profiles are obtainable for n = 1 [e.g. Rudge et al., 2015].134

Given the undoubted complexity of fluid dynamical processes that act along fluvial chan-135
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nels, it is rather perplexing that large inventories of river profiles can be successfully in-136

verted at the continental scale to yield apparently meaningful uplift rate histories. While137

the success of a simple advective model of fluvial erosion at these large scales implies that138

a deterministic approach may be worth pursuing, the implied simplicity does require fur-139

ther justification. One potentially fruitful way of tackling this problem is to construct and140

analyze power spectra of longitudinal river profiles.141

Spectral Analysis142

Many studies have examined the spectral content of landscapes from centimeter to143

kilometer scales [e.g. Bell, 1975; Gallant et al., 1994; Pelletier, 1999; Birnir et al., 2001;144

Murray & Fonstad, 2007; Singh et al., 2011; Kalbermatten et al., 2012]. They generally145

demonstrate that landscapes are spectrally red (i.e. topographic power is proportional to146

k−2, where k is the wavenumber). This observation indicates that landscapes are often147

self-similar so that the ratio of amplitude to wavelength is independent of scale [Huang &148

Turcotte, 1989; Barabasi & Stanley, 1995; Barenblatt, 2003; Turcotte, 2007]. Landscape149

analysis tends to focus on the application of Fourier transforms which, for a river profile,150

can be expressed in discrete form using151

Z ( f ) =
∫ ∞

−∞

z(x)e2πi f tdx ≈ ∆
N−1∑
k=0

zxe2πikn/N (2)

where N complex numbers (i.e. zx ) are mapped onto N complex numbers that represent152

amplitude and phase [see, e.g., Press et al., 1992]. The sampling rate, ∆, has units of me-153

ters. The power at frequency intervals (i.e. magnitude of constituent waveforms) is given154

by155

Pz ( f ) = 2|Z ( f ) |2, 0 ≤ f ≤ ∞. (3)

This function describes the one-sided power spectrum of a real function, z(x). Total power,156

PT , is identical in the frequency or space domain and is given by157

PT =

∫ ∞

−∞

|z(x) |2dx =
∫ ∞

−∞

|Z ( f ) |2d f . (4)

Standard Fourier decomposition of landscapes and river profiles relies on the assump-158

tion of stationarity and a significant drawback is the lack of information about the spa-159

tial distribution of power. Using Fourier transforms for non-stationary, discrete functions160

such as river profiles can yield noisy spectra that are difficult to interpret (e.g. Figure 3c).161

This drawback can be partially addressed by exploiting windowed Fourier transforms and162

Slepian taper functions [e.g. Perron et al., 2008].163
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Here we exploit wavelet transforms which have particular advantages since they can164

be used to identify dominant wavenumbers (i.e. spatial frequencies) and to show how165

power varies with distance, x, along channels. The wavelet transform of a longitudinal166

river profile, Wx (s), as a function of scale, s, can be written in discrete notation as167

Wx (s) =
N−1∑
x′=0

zx′ψ
[

(x ′ − x)δx
s

]
(5)

where zx′ are discrete measurements of elevation along the profile. Note that the mother168

wavelet, ψ, is scaled by s and translated along the river profile by x ′ for N data points.169

Prior to transformation, these data are linearly resampled using a constant value of δx.170

The wavelet power spectrum is given by171

φ(s, x ′) = |Wx (s) |2. (6)

The distance-averaged power spectrum is172

φ̄(s) =
1
N

N−1∑
x=0

|Wx (s) |2. (7)

Wavelet and Fourier power spectra can be compared by converting distance scales into173

wavenumbers and by rectifying spectral bias (i.e. φr = φ(s) |s−1 |, where φr is rectified174

power; Torrence & Compo, 1998; Liu et al., 2007). These scales were calculated using the175

approach described by Torrence & Compo [1998] where176

s j = s◦2 jδ j , where j = 0, 1, . . . J . (8)

The smallest scale is s◦ = 2δx. Values of δ j determine the resolution of calculated spec-177

tra. In the example shown in Figure 3, N = 18544, δx = 2 km, δ j = 0.1 and J = 132178

which yields a total of 133 scales that range from 4 km up to 4 × 104 km. In this case, the179

river profile was mirrored seven times prior to transformation. We introduced a constant,180

c = N , such that φr = φ(s) |(cs)−1 |. In this way, power spectra of synthetic time series181

generated using either Fourier or wavelet transforms can be more readily compared. Cal-182

culated spectra are dependent upon the choice of mother wavelet— those calculated using183

either Morlet or M th order derivative of Gaussian (DOG) mother wavelets are similar pro-184

vided M > 6. Resultant spectra are sensitive to discontinuities at the start and end of a185

given river profile which can generate minor edge-effect artefacts. One way of minimizing186

these edge effects is to mirror river profiles about both z and x axes, which acts to miti-187

gate the effects of abrupt elevation changes. Transformed time series resemble sine wave188
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functions at the longest wavelengths. By mirroring seven or more times prior to transfor-189

mation, we demonstrate that edge-effect artefacts on calculated power spectra are reduced.190

Figure 3 presents wavelet power spectra for the Niger river profile. We tested a suite191

of Morlet mother wavelets with dimensionless frequencies 2 ≤ ω◦ ≤ 8 and δ j = 0.1192

[Torrence & Compo, 1998]. Importantly, spectra converge for ω◦ > 2. In order to demon-193

strate that the original river profile can be reliably recovered, an inverse wavelet trans-194

form is carried out by summing the transform over all values of k. Typically, this recov-195

ery has a mean error of 0.3%, which demonstrates that the wavelet transform is a faithful196

representation of a river profile. A suite of tests for DOG mother wavelets with deriva-197

tives 2 ≤ M ≤ 8 shows that spectra converge for M > 2 and that calculated spectra198

are smoother than those with equivalent Morlet frequencies, as expected. In all cases, the199

greatest power resides at the longest wavelengths. This observation is corroborated by re-200

calculating profiles using different portions of a given power spectrum. If power at wave-201

lengths of less than 100 km is omitted, recovered and observed profiles still closely match202

each other with a mean error of ∼ 2% (i.e. ∼ 10 m). If power at wavelengths of less than203

1000 km is omitted, the recalculated river profiles are smooth but the long wavelength204

features are still accurately recovered. These tests of omission confirm that the most sig-205

nificant power is concentrated at wavelengths > 102 km.206

At wavelengths that are shorter than ∼ 100 km, there is a significant reduction in207

power, which also becomes more localized as a function of distance along each profile.208

For example, the Niger river has greater power at ranges of 500–1000 km and > 3000 km.209

These segments of the spectrum correspond to rapid changes in elevation along the river210

channel (e.g. knickpoints, artificial dams). The distribution of power at the shortest wave-211

lengths is very similar along individual profiles, which corroborates the widely held view212

that ‘erosional diffusivity’ has negligible influence [cf. Rosenbloom & Anderson, 1994].213

Changes in spectral slope are highlighted by normalizing spectral power with (2πk)2 (e.g.214

Figure 3f). We note that there is generally a change in spectral slope at a wavelength of215

∼ 100 km.216

The uncertainty of SRTM measurements is usually quoted as ∼ 6 m, which means217

that calculated power that is ≤ 36 m2 is unreliable at short wavelengths (e.g. Hancock218

et al., 2006). We note that radar altimetry can only measure the height of water surfaces219

and that there is at present no reliable method for routinely measuring fluvial bathymetry,220
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notwithstanding recent technological advances such as the Surface Water Ocean Topog-221

raphy mission [Durand et al., 2016; Biancamaria et al., 2016]. We have partly assessed222

the potential importance of this shortcoming by using two complementary approaches.223

First, we analyzed distance-averaged spectra where power values of ≤ 100 m2 were re-224

moved from the transformed profile. Secondly, we ran a suite of tests for which 10 m of225

normally distributed random noise was added to the reduced signal. This test was carried226

out for 100 different distributions of random noise and is equivalent to assuming that flu-227

vial bathymetry has an uncertainty of ≤ 10 m. For both tests, the distribution of noise228

was commensurate with that of the raw signal. The results of these Monte Carlo tests sug-229

gest that removal or addition of random noise does not impact our assertion that the bulk230

of spectral power resides at the longest wavelengths or that a transition from one spectral231

regime to another occurs at a wavelength of ∼ 100 km (Figure 4).232

We generate and analyze spectra and associated wavelet tests for the main tributaries233

of four significant African catchments: Niger, Zambezi, Orange and Congo (Figure 3;234

Appendix A). First, power spectra were generated for the eight principal profiles of each235

catchment using the DOG wavelet with M = 6. Secondly, distance-averaged spectra were236

constructed. Finally, these spectra were used to determine the mean values and extrema237

shown in Figure 5. To determine the spectral regimes that best-fit observed spectra, we238

sought the optimal spectral slopes and cross-over loci that minimize the misfit between239

observed and calculated spectra. Synthetic spectra were calculated using240

φ(k) =



a−1kα (2πk)2 for k ≥ kx

b−1kβ (2πk)2 for k < kx,
(9)

where α and β are spectral slopes in log-log space where values of −2,−1, 0 and 1 rep-241

resent red, pink, white and blue noise, respectively. kx is the wavenumber at the cross-242

over locus between different spectral slopes. a and b are constants of proportionality,243

which are set so that spectral regimes meet at the cross-over locus. Thus rearranging244

φ(kx ) = b−1kβx f = a−1kαx f yields245

b =
1

φ(kx )
kβx f , a = bkα−βx , (10)

where f = (2πk)2 (see inset panel of Figure 5b). Finally, the misfit between observed and246

calculated spectra is given by247

M =


1
N

N∑
i=1

(
φ(k)oi − φ(k)ci

φ(k)oi

)2
1/2

, (11)
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where N is number of measurements. φo and φc are the observed and calculated power,248

respectively. Figure 5c shows how M varies as a function of 10−6 ≤ kx ≤ 9 × 10−4 m−1,249

10−16 ≤ φ(kx ) ≤ 9 × 10−12, −3 ≤ α ≤ 1, −3 ≤ β ≤ 1 for the Zambezi catchment. The250

optimal cross-over locus occurs at a wavenumber of 10−5 m−1 with integer spectral slopes251

of β = −2 and α = −1.252

Our analysis suggests that at the longest wavelengths a spectral slope of k−2 consis-253

tent with red noise exists, in general agreement with previous geomorphic studies [e.g.254

Bell, 1975; Perron et al., 2008]. Significantly, this behavior is also consilient with the255

spectral characteristics of observed dynamic topography— probably the principal and256

dominant forcing mechanism of fluvial landscapes [Hager & Richards, 1989]. A cross-257

over transition from slopes of k−2 to slopes of k−1 at wavelengths of ∼ 102 km is ob-258

served for many, but not all, river profiles. This transition from red to pink (i.e. a slope259

of k−1) noise is suggestive of a change in physical regime. We note in passing that the260

spectral phase of the Niger river profile, tan−1[={Wx (s)}/<{Wx (s)}] where ={Wx (s)} and261

<{Wx (s)} are imaginary and real parts of the transform, is not independent and identi-262

cally distributed (i.e. i.i.d.).263

Alternatively, power spectra of slope profiles (i.e. dz/dx) can be calculated. In our264

view, this approach has significant drawbacks because discrete and noisy observations are265

differentiated, magnifying uncertainties and leading to unstable solutions. Nonetheless,266

it is straightforward to analyze the transform of such a differentiated river profile (Figure267

6). In this case, the analyzed time series has the form z′(x) = (zi+1 − zi−1)/dx and the268

power of the slope profile is proportional to k0 (i.e. white noise) at wavelengths & 100 km269

and proportional to k (i.e. blue noise) at shorter wavelengths. This result is self-consistent270

since the spectral power of a slope profile yields spectral exponents that are equal to those271

of the height profile minus two. Thus the k0 component at the left-hand end of Figure272

6c corresponds to red noise (i.e. k−2) and the k component at the right-hand end of this273

panel corresponds to pink noise (i.e. k−1).274

Discussion275

These spectral observations have two implications which may aid an understanding276

of how fluvial channels acquire their longitudinal profiles. First, the bulk of spectral power277

resides at wavelengths > 102 km, implying that large-scale processes, such as tectonically278
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driven uplift, are more likely to be the dominant forcing mechanisms that configure and279

moderate geometries of river profiles. At the longest wavelengths and timescales, fluvial280

erosional processes (at least as represented by the stream power law) are highly integrable281

through space and time. Secondly, the existence of a cross-over transition from one spec-282

tral regime to another suggests self-similar behavior has limits and that complexity eventu-283

ally dominates at smaller scales. At these scales, hydraulic and erosive processes undoubt-284

edly become of increasing significance compared with tectonic processes. The observation285

that spectral power is proportional to k−1 at shorter wavelengths implies that these shorter286

wavelength processes could be characterized by the addition of, say, red and white (i.e.287

k0) noise or, more speculatively, of red and blue (i.e. k) noise.288

To examine how pink (i.e. k−1) noise might be generated, a suite of synthetic sig-289

nals that have the form z = a1 sin(2πk1x)+ . . .+an sin(2πkn x) where a is amplitude and k290

is wavenumber (i.e. spatial frequency) were transformed. The signals were constructed by291

adding red noise to either white or blue noise. Figure 7 shows that the transition from red292

to pink noise can be generated by combining red noise (φ ∝ k−2) with either white (φ ∝ 1)293

or blue (φ ∝ k) noise. By increasing the amount of white or blue noise, this transition294

shifts to smaller wavenumbers (i.e. longer wavelengths). At the shortest wavelengths, there295

is limited evidence that power spectra may steepen, which is suggestive of blue noise (e.g.296

Figure 5b, h, k). One possibility is that blue noise onsets at length scales of > 102 km297

which could cause the red noise spectrum to flatten and turn pink such that φ ∝ k−1.298

Blue noise only appears to become spectrally emergent at length scales shorter than 10299

km (Figure 4a). Plausible sources of what is acoustically referred to as ‘dither’ (i.e. added300

random noise), include non-linear characteristics of the original landscape, the structure301

of the eroding substrate, and turbulent fluid flow mechanisms [Smith et al., 1997a,b]. For302

example, it has been recognized that water flow equations have solutions that can develop303

shocks and that the sediment flow equation can yield rough solutions with singularities304

[Birnir et al., 2001]. These shocks and singularities in combination with lithologic changes305

can give rise to rapids and waterfalls which might constitute blue noise (i.e. φ ∝ k). We306

acknowledge, however, that blue noise is exceedingly rare in nature and that white noise307

would be a more reasonable proposition if there was no evidence for emergent blue noise.308

Sornette & Zhang [1993] propose that landform evolution can be modeled using a309

non-linear Langevin equation with a stochastic noise driver, referred to as the Kardar-310

Parisi-Zhang equation [Kardar et al., 1986]. Here, an adapted version of their equation311
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(3) that allows for horizontal instead of gradient-normal advection is given by312

∂z
∂t
= −vAm ∂z

∂x
+U + η(x, t), (12)

where η(x, t) is noise that can vary as a function of space and time. This equation posits313

that the erosional process along river channels depends upon an interplay between hor-314

izontal advection of knickzones and colored noise. In this way, short-time intervals can315

lead to the growth or destruction of small-scale spatial structures whereas long-time in-316

tervals permit the creation of large-scale spatial structures that act as transient attractors317

(Smith et al., 2000; Figure 8). To examine the consequences of adding monotonic noise318

to the stream power formulation, we ran a suite of tests for which η ≥ 0. Figure 8 shows319

a synthetic river profile at three different time steps following a single pronounced uplift320

event. The resultant power spectra evolve as knickzones migrate upstream. These calcu-321

lations demonstrate that river profiles are probably spectrally red (i.e. most power resides322

at longest wavelengths). Inclusion of a small amount of uniformly distributed monotonic323

noise modifies the shape of the river profile at the shortest wavelengths (e.g. Figure 8f-h).324

However, large signals (i.e. regional uplift events) emerge through this small-scale com-325

plexity. The calculated amount of incision suggests that dominant forcing signals emerge326

from this complexity, implying that distal sedimentary fluxes are likely to be deterministic327

at appropriately long length and timescales (Figure 8g).328

One practical application of this approach is described by Chase [1992] who intro-329

duced the concept of random ‘precipitons’ of water that spatially migrate to permit head-330

ward propagation of channels. This concept underpins all numerical landscape models331

that appear to reproduce observable features of eroding landscapes with a remarkable de-332

gree of realism [e.g. Pelletier, 1999; Hobley et al., 2016; Salles et al., 2016]. A detailed333

mathematical formulation is presented by Birnir et al. [2001] who develop a model, based334

on the earlier work of Smith & Bretherton [1972] and Smith et al. [1997a,b], that bridges335

the substantial gap between stochastic and deterministic approaches. They argued that336

white noise is generated by sediment divergences seeded by instabilities in water flow.337

These instabilities are random, highly non-linear, and prone to shock formation and hy-338

draulic jumps. The resultant channelization process is driven by these significant sources339

of spatially correlated and uncorrelated noise. As the landscape evolves, a different form340

of scaling emerges that is consistent with what is often referred to as ‘self-organized crit-341

icality’. This maturation process evolves from the earlier channelization process. Birnir et342

al. [2001] conclude by stating that a simple advective model of fluvial erosion provides343
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us with a compelling explanation for the fundamental processes that account for landscape344

development.345

Scaling of fluvial landscapes could provide an explanation of how very complex,346

stochastic behavior on small wavelengths and short timescales can ultimately lead to deter-347

ministic simplicity. This process might explain why, at the largest scales, inverse modeling348

of continent-wide drainage inventories appears, surprisingly, to allow accurate uplift rate349

histories to be determined. The process might be analogous to an interface being driven350

through random media with quenched noise where the evolution of this interface at differ-351

ent length scales can be accounted for using a non-linear Langevin equation [Kardar et al.,352

1986; Birnir et al., 2001]. Inverse modeling of continental-scale drainage networks sug-353

gest that long wavelength processes play a significant role in forcing and configuring land-354

scapes. The non-trivial ability to fit substantial inventories of river profiles by smoothly355

varying regional uplift rate as a function of time and space does appear to be, at first356

glance, in conflict with the results of geomorphic studies that focus on the fluid dynamical357

complexities of channel development. However, spectral analyses suggest these approaches358

are not necessarily mutually exclusive. Instead, small-scale complexities gradually decay359

away as a function of wavelength permitting the emergence of large-scale simplicity (Fig-360

ure 9).361

Conclusions362

We have attempted to address apparent disparities between the undoubtedly complex363

non-linear fluid dynamics of channel evolution and the apparent simplicity of emergent364

continental-scale landforms. Inverse modeling of longitudinal river profiles suggests that365

optimal fits between observed and calculated profiles can be obtained for realistic, albeit366

smooth, patterns of regional uplift through space and time. This modeling also implies367

that on appropriately chosen time and length scales, a relatively small number of constant368

erosional parameters can describe this system. Nevertheless, a large number of fluvial ge-369

omorphic studies often emphasise the importance of complex, non-linear behavior. In an370

attempt to bridge the gap between these apparently disparate approaches, we have spec-371

trally analyzed a suite of African river profiles using a wavelet transform approach. More372

than 90% of spectral power resides at wavelengths of > 102 km, where spectra exhibit373

self-similar behavior consistent with red noise. A cross-over transition from red to pink374

noise can occur at wavelengths of ∼ 102 km. This observation suggests that at shorter375
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wavelengths the effects of noise become evident. These scaling observations are consistent376

with physically based landscape models in which the channelization process is driven by377

white, or conceivably blue, noise but externally forced by large-scale regional uplift.378
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Figure 1. Dynamic topography of Africa. Red/blue contours = long wavelength (>800 km) free-air grav-

ity anomalies from GRACE dataset converted into dynamic topography by assuming admittance of Z=+40

mGal/km [Tapley et al., 2005; Jones et al., 2012]; thin black lines = drainage network extracted from SRTM

3 arc second (i.e. 90×90 m) digital elevation model using standard flow-routing algorithms [Tarboton, 1997];

thick black lines = principal rivers of Niger (N), Congo (C), Orange (O), and Zambezi (Z) catchments; gray

polygons = excluded regions where internal drainage and paleolakes exist.
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Figure 2. Inverse modeling of river profiles. (a) Gray lines = observed river profiles from Nile catchment;

red dotted lines = calculated river profiles determined using spatial and temporal pattern of regional uplift

shown in panels (g)–(i) that was obtained by inverse modeling. (b)–(f) Observed and calculated river profiles

for selected African catchments. (g)–(i) Cumulative uplift histories at 30, 15 and 0 Ma obtained by inverse

modeling of subset of 704 river profiles.
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Figure 3. Power spectral analysis of Niger river. (a) Gray line = longitudinal profile of Niger river.

Solid/dashed red lines = profiles calculated using wavelengths longer than 100 km and 1000 km, respectively;

labeled arrows show loci of major dams. (b) Power spectrum calculated using Morlet wavelet transform

method [Torrence & Compo, 1998]. Solid/dashed horizontal lines at 100 km and at 1000 km, respectively.

(c) Solid line = distance-averaged power as function of k; gray band = five point moving average of power

spectrum generated by Fourier transform. (d) Solid line = rectified power, φr , as function of k where spectral

bias is rectified according to scale with ω◦ = 6 [Liu et al., 2007]; pair of labeled gray lines = φr with ω◦ = 4

and 8. (e) Solid line = φr calculated using M th order DOG wavelet where M = 6; three labeled gray lines

= φr where M=2, 4 and 8. (f) Solid line = φr calculated using 6th order DOG wavelet and normalized by

(2πk)2. Pair of gray lines = φr where M = 4 and M = 8.
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Figure 4. Effects of noisy data. (a) Profile of Niger river. Blue line = low-pass filtered profile where

φ ≤ 100 m2 (i.e. amplitudes ≤ 10 m) are removed; gray line = profile with added random noise; inset shows

distribution of random noise used to generate gray line. (b) Power spectrum of filtered river profile calculated

using Morlet wavelet transform method where φ ≤ 100 m2 is removed. (c) Power spectrum of river profile

with added random noise. (d) Solid line = distance-averaged power spectrum of original river profile from

Figure 3d calculated using Morlet wavelet transform; blue line = distance-averaged power spectrum where

φ ≤ 100 m2 is removed; gray band = distance-averaged power spectra for 100 distributions of added random

noise of ≤ 10 m. (e) Power spectrum calculated using using 6th order DOG wavelet; blue line and gray band

as in panel d. (f) Identical spectrum normalized by (2πk)2.
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Figure 5. Average power spectra for different catchments. (a) Schematic map of Zambezi catchment.

Variably thick line = Zambezi river where thickness of line is proportional to observed upstream drainage

area; thin lines = 7 major tributaries. (b) Average power spectrum for tributaries of Zambezi catchment cal-

culated using 6th order DOG wavelet; solid line = mean power that is normalized according to maximum

amplitude before determining mean; thin lines = extremal values; reticule shows φ ∝ k−2 regime (flat lines)

and φ ∝ k−1 regime (diagonal lines); vertical arrow = locus of cross-over for best-fitting synthetic spectra

calculated using values of α and β identified from panel c; inset = diagram illustrating scheme for calculation

of synthetic spectra (see text for details). (c) Misfit between observed and calculated spectra plotted as func-

tion of spectral slopes, α and β, that intersect at optimal locus of cross-over (see text for details). × symbol =

locus of global minimum for non-integer values of α and β; ◦ symbol = position nearest global minimum at

which integer values can be inferred. (d)-(f) Same for Orange catchment. (g)-(i) Same for Congo catchment.

(j)-(l) Same for Niger catchment.
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Figure 6. Power spectra of slope profile. (a) Black line = Niger river profile (see Figure 3a); gray line

= slope of Niger river; red line = inverse wavelet transform calculated from power spectra shown in panel

b. (b) Power spectrum of slope profile. (c) Black line = distance-averaged power spectrum of slope profile;

horizontal/diagonal dotted reticule = white/blue noise.
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Figure 7. Analysis of synthetic colored noise. (a) Elevation as function of distance generated by combin-

ing red and white noise across all wavenumbers. Black line = calculated elevation; white circles = elevation

recovered by inverse transform of calculated power spectrum shown in panel b. (b) Power spectrum calculated

using Morlet wavelet with ω◦=6. Numbered circles = spectral peaks identified in panel c. (c) Distance-

averaged power spectra. Black line = rectified power as function of k; gray line = power spectrum constructed

by Fourier transform of elevation as function of distance that has been mirrored seven times; numbered circles

= spectral peaks for power spectrum constructed by Fourier transform; red and gray lines = power of red (i.e.

φ ∝ k−2) and white (i.e. independent of k) noise used to generate periodic functions for building elevation

as function of distance shown in panel a. Note that for distance-averaged spectra, Fourier transform recovers

spectral peaks more accurately than wavelet transform; pink line = pink (i.e. φ ∝ k−1) noise; vertical arrow =

locus of cross-over. (d)-(f) Same using alternative combination of red and blue (i.e. φ ∝ k) noise.
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Figure 8. Synthetic river profiles. (a) Uplift rate, U, as function of time used to generate synthetic river

profiles in panels (c) and (f). (b) Cumulative uplift (i.e.
∫

Udt) as function of time. (c) River profiles cal-

culated by solving stream power equation without added noise (i.e. η = 0 in equation 12). Equation (12)

was solved using an upwind finite-difference scheme that satisfies Courant-Friedrichs-Lewy condition for

numerical stability [Roberts & White, 2010]. Gray and black lines = calculated profiles at 17, 8 and 0 Ma,

respectively. (d) Amplitude of incision as function of time for three time steps shown in panel (c). (e) Power

spectrum of river profiles at 0 Ma calculated using Morlet wavelet transform. (f)-(h) Same for added mono-

tonic noise (i.e. η > 0).
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◦ symbol = position nearest global minimum at which integer values can be inferred. (c) Cartoon showing

idealized power spectra normalized by (2πk)2. Red/pink/blue lines and circles = spectral slopes for k−2, k−1

and k, respectively; vertical dashed lines = loci of cross-over transitions. (d) Synthetic landscape generated

using graduated blend from left to right of red, pink and blue Perlin noise [Perlin, 2002].
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A: Power spectral analyses of Zambezi, Orange and Congo rivers453

The three figures of this appendix show individual power spectra used to generate454

average spectra shown in Figure 9. Each figure is arranged as follows. (a) Gray line =455

longitudinal river profile. Solid/dashed red lines = profiles calculated using wavelengths456

longer than 100 km and 1000 km, respectively; labeled arrows show loci of major dams.457

(b) Power spectrum calculated using Morlet wavelet transform method [Torrence & Compo,458

1998]. Solid/dashed horizontal lines at 100 km and at 1000 km, respectively. (c) Solid459

line = distance-averaged power as function of k; gray band = five point moving average460

of power spectrum generated by Fourier transform. (d) Solid line = rectified power, φr , as461

function of k where spectral bias is rectified according to scale with ω◦ = 6 [Liu et al.,462

2007]; pair of labeled gray lines = φr with ω◦ = 4 and 8. (e) Solid line = φr calculated463

using M th order DOG wavelet where M = 6; three labeled gray lines = φr where M = 2,464

4 and 8. (f) Solid line = φr calculated using 6th order DOG wavelet and normalized by465

(2πk)2. Pair of gray lines = φr where M = 4 and M = 8.466
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Figure A.1. Spectral analysis of Zambezi river.467
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Figure A.2. Spectral analysis of Orange river.468
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Figure A.3. Spectral analysis of Congo river.469
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