317 research outputs found

    Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    Get PDF
    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Measurement of the branching ratios ψ′→e+e−\psi^\prime \to e^+ e^-, ψ′→J/ψππ\psi^\prime \to J/\psi \pi \pi and ψ′→J/ψη\psi^\prime \to J/\psi \eta

    Full text link
    We have measured several branching ratios for ψ′\psi^\prime decay using the data collected by FNAL E835 experiment during year 2000, obtaining B(ψ′→e+e−)=0.0068±0.0001±0.0004{\cal B}(\psi^\prime \to e^+ e^-) = 0.0068\pm0.0001\pm0.0004, B(ψ′→J/ψπ+π−)=0.292±0.005±0.018{\cal B}(\psi^\prime \to J/\psi \pi^+ \pi^-) = 0.292\pm0.005\pm0.018, B(ψ′→J/ψπ0π0)=0.167±0.005±0.014{\cal B}(\psi^\prime \to J/\psi \pi^0 \pi^0) = 0.167\pm0.005\pm0.014 and B(ψ′→J/ψη)=0.028±0.002±0.002{\cal B}(\psi^\prime \to J/\psi \eta) = 0.028\pm0.002\pm0.002. We also present a measurement of the dipion mass distribution in the decays ψ′→J/ψππ\psi^\prime \to J/\psi \pi \pi

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable ‘mini’ integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366–959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20 000. After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy’s origins by completing Gaia’s phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z 1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable ‘mini’ integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366–959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20 000. After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy’s origins by completing Gaia’s phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z 1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator

    Observation of CP violation in B ->eta/K-0 decays

    Get PDF
    We present measurements of the time-dependent CP-violation parameters S and C in B-0 -> eta K-'(0) decays. The data sample corresponds to 384 x 10(6) B (B) over bar pairs produced by e(+)e(-) annihilation at the Upsilon(4S). The results are S = 0.58 +/- 0.10 +/- 0.03 and C = -0.16 +/- 0.07 +/- 0.03. We observe mixing-induced CP violation with a significance of 5.5 standard deviations in this b -> s penguin dominated mode

    Determinations of vertical bar V-ub vertical bar from inclusive semileptonic B decays with reduced model dependence

    Get PDF
    We report two novel determinations of vertical bar V-ub vertical bar with reduced model dependence, based on measurements of the mass distribution of the hadronic system in semileptonic B decays. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson from Y(4S) -> B (B) over bar events. In one approach, we combine the inclusive (B) over bar -> X(u)l (v) over bar rate, integrated up to a maximum hadronic mass m(X) X-s gamma photon energy spectrum. We obtain vertical bar V-ub vertical bar = (4.43 +/- 0.38(stat) +/- 0.25(syst) +/- 0.29(theo)) x 10(-3). In another approach we measure the total (B) over bar -> X(u)l (v) over bar rate over the full phase space and find vertical bar V-ub vertical bar = 3.84 +/- 0.70(stat) +/- 0.30(syst) +/- 0.10(theo)) x 10(-3)
    • …
    corecore