Determinations of $\left|V_{u b}\right|$ from Inclusive Semileptonic B Decays with Reduced Model Dependence

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ D. S. Best, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6, *}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. A. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held,,${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ D. Walker, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N.S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V.E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ S. Abachi, ${ }^{14}$ C. Buchanan, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch,,${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ J. S. Minamora, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ R. Andreassen, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. C. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ F. Winklmeier, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ M. Dickopp, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25, \dagger}$ E. Latour, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28,{ }^{\text {, }}}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger, ${ }^{31, \S}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J. R. Gaillard, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich,,32 W. Panduro Vazquez, ${ }^{32}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ W. F. Mader, ${ }^{33}$ U. Mallik, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. I. Yi, ${ }^{34}$ G. Schott, ${ }^{35}$ N. Arnaud, ${ }^{36}$ M. Davier, ${ }^{36}$ X. Giroux, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ A. Oyanguren, ${ }^{36}$ T. C. Petersen, ${ }^{36}$ S. Pruvot, ${ }^{36}$ S. Rodier, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ A. Stocchi, ${ }^{36}$ W. F. Wang, ${ }^{36}$ G. Wormser, ${ }^{36}$ C. H. Cheng, ${ }^{37}$ D. J. Lange, ${ }^{37}$ D. M. Wright, ${ }^{37}$ A. J. Bevan, ${ }^{38}$ C. A. Chavez, ${ }^{38}$ I. J. Forster, ${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ K. A. George, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ R. J. Parry, ${ }^{38}$ D. J. Payne, ${ }^{38}$ K. C. Schofield, ${ }^{38}$ C. Touramanis, ${ }^{38}$ F. Di Lodovico, ${ }^{39}$ W. Menges, ${ }^{39}$ R. Sacco, ${ }^{39}$ C. L. Brown, ${ }^{40}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ M. G. Green, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ P. S. Jackson, ${ }^{40}$ T. R. McMahon, ${ }^{40}$ S. Ricciardi, ${ }^{40}$ F. Salvatore, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ J. Allison,,42 N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ Y. M. Chia, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ M. P. Kelly, ${ }^{42}$ G. D. Lafferty, ${ }^{42}$ M. T. Naisbit, ${ }^{42}$ J. C. Williams, ${ }^{42}$ C. Chen, ${ }^{43}$ W. D. Hulsbergen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. Kovalskyi, ${ }^{43}$ C. K. Lae, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ G. Blaylock, ${ }^{44}$ C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ R. Kofler, ${ }^{44}$ X. Li, ${ }^{44}$ T. B. Moore, ${ }^{44}$ S. Saremi, ${ }^{44}$ H. Staengle, ${ }^{44}$ S. Y. Willocq, ${ }^{44}$ R. Cowan, ${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ S. J. Sekula, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ H. Kim, ${ }^{46}$ P. M. Patel, ${ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ V. Lombardo, ${ }^{47}$ F. F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ J. Reidy, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté, ${ }^{49}$ P. Taras, ${ }^{49}$ F. B. Viaud, ${ }^{49}$ H. Nicholson, ${ }^{50}$ N. Cavallo, ${ }^{51, \|}$ G. De Nardo, ${ }^{51}$ F. Fabozzi, ${ }^{51, \|}$ C. Gatto, ${ }^{51}$ L. Lista, ${ }^{51}$ D. Monorchio, ${ }^{51}$ P. Paolucci, ${ }^{51}$ D. Piccolo, ${ }^{51}$ C. Sciacca, ${ }^{51}$ M. Baak, ${ }^{52}$ H. Bulten, ${ }^{52}$ G. Raven, ${ }^{52}$ H. L. Snoek, ${ }^{52}$ L. Wilden, ${ }^{52}$ C. P. Jessop, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ T. Allmendinger, ${ }^{54}$ G. Benelli, ${ }^{54}$ K. K. Gan, ${ }^{54}$ K. Honscheid, ${ }^{54}$ D. Hufnagel, ${ }^{54}$ P. D. Jackson, ${ }^{54}$ H. Kagan, ${ }^{54}$ R. Kass, ${ }^{54}$ T. Pulliam, ${ }^{54}$ A. M. Rahimi, ${ }^{54}$ R. Ter-Antonyan, ${ }^{54}$ Q. K. Wong, ${ }^{54}$ N. L. Blount, ${ }^{55}$
J. Brau, ${ }^{55}$ R. Frey, ${ }^{55}$ O. Igonkina, ${ }^{55}$ M. Lu, ${ }^{55}$ C. T. Potter, ${ }^{55}$ R. Rahmat, ${ }^{55}$ N. B. Sinev, ${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$ E. Torrence, ${ }^{55}$ F. Galeazzi, ${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin, ${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci, ${ }^{56}$ M. Benayoun, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David, ${ }^{57}$ L. Del Buono, ${ }^{57}$ Ch. de la Vaissière, ${ }^{57}$ O. Hamon, ${ }^{57}$ B. L. Hartfiel, ${ }^{57}$ M. J. J. John, ${ }^{57}$ Ph. Leruste, ${ }^{57}$ J. Malclès, ${ }^{57}$ J. Ocariz, ${ }^{57}$ L. Roos, ${ }^{57}$ G. Therin, ${ }^{57}$ P. K. Behera, ${ }^{58}$ L. Gladney, ${ }^{58}$ J. Panetta, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ S. Pacetti, ${ }^{59}$ M. Pioppi, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ F. Bucci, ${ }^{60}$ G. Calderini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ R. Cenci, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ M. Rama, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ D. Judd, ${ }^{61}$ D. E. Wagoner, ${ }^{61}$ J. Biesiada, ${ }^{62}$ N. Danielson, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y.P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J.S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{63}$ A. D'Orazio, ${ }^{63}$ E. Di Marco, ${ }^{63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Polci, ${ }^{63}$ F. Safai Tehrani, ${ }^{63}$ C. Voena, ${ }^{63}$ H. Schröder, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ N. De Groot, ${ }^{65}$ B. Franek, ${ }^{65}$ G. P. Gopal, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ F. F. Wilson, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ G. Graziani, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ M. Legendre, ${ }^{66}$ B. Mayer, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ M. V. Purohit, ${ }^{67}$ A. W. Weidemann, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ T. Abe, ${ }^{68}$ M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ N. Berger, ${ }^{68}$ A. M. Boyarski, ${ }^{68}$ O. L. Buchmueller, ${ }^{68}$ R. Claus, ${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ M. Cristinziani, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ D. Dong, ${ }^{68}$ J. Dorfan, ${ }^{68}$ D. Dujmic, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ S. Fan, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ T. Hadig, ${ }^{68}$ V. Halyo, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ J. Libby, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O’Grady, ${ }^{68}$ V.E. Ozcan, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ N. van Bakel, ${ }^{68}$ M. Weaver, ${ }^{68}$ A. J. R. Weinstein, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ C. Roat, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ R. Bula, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ B. Pan, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ S. B. Zain,,70 W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. Satpathy, ${ }^{72}$ R.F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ I. Kitayama, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ M. Bona, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ M. Bomben, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ S. Dittongo, ${ }^{75}$ S. Grancagnolo, ${ }^{75}$ L. Lanceri, ${ }^{75}$ L. Vitale, ${ }^{75}$ V. Azzolini, ${ }^{76}$ F. Martinez-Vidal, ${ }^{76}$ R. S. Panvini, ${ }^{77, \pi}$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan, ${ }^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ I. M. Nugent, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ A. M. Eichenbaum, ${ }^{80}$ K. T. Flood, ${ }^{80}$ M. T. Graham, ${ }^{80}$ J. J. Hollar, ${ }^{80}$ J. R. Johnson, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ H. Li, ${ }^{80}$ R. Liu, ${ }^{80}$ B. Mellado, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ A. K. Mohapatra, ${ }^{80}$ Y. Pan, ${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost, ${ }^{80}$ P. Tan, ${ }^{80}$ S. L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ and H. Neal ${ }^{81}$
(BABAR Collaboration)

[^0]${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany
${ }^{24}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany
${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Institut für Experimentelle Kernphysik, Universität Karlsruhe, D-76021 Karlsruhe, Germany
${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{38}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{39}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{40}$ Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 OEX, United Kingdom
${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{42}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{43}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{44}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{45}$ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{46}$ McGill University, Montréal, Québec H3A 2T8, Canada
${ }^{47}$ Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
${ }^{48}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{49}$ Physique des Particules, Université de Montréal, Montréal, Québec H3C 3J7, Canada
${ }^{50}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{51}$ Dipartimento di Scienze Fisiche and INFN,Università di Napoli Federico II, I-80126, Napoli, Italy
${ }^{52}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{53}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{54}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{55}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{56}$ Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
${ }^{57}$ Laboratoire de Physique Nucléaire et de Hautes Energies, Universités Paris VI et VII, F-75252 Paris, France
${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{59}$ Dipartimento di Fisica and INFN, Università di Perugia, I-06100 Perugia, Italy
${ }^{60}$ Dipartimento di Fisica, Scuola Normale Superiore, and INFN, Università di Pisa, I-56127 Pisa, Italy
${ }^{61}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{63}$ Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{70}$ State University of New York, Albany, New York 12222, USA
${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{74}$ Dipartimento di Fisica Sperimentale and INFN, Università di Torino, I-10125 Torino, Italy
${ }^{75}$ Dipartimento di Fisica and INFN, Università di Trieste, I-34127 Trieste, Italy
${ }^{76}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{77}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{78}$ University of Victoria, Victoria, British Columbia V8W 3P6, Canada
${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{81}$ Yale University, New Haven, Connecticut 06511, USA (Received 1 February 2006; published 8 June 2006)

We report two novel determinations of $\left|V_{u b}\right|$ with reduced model dependence, based on measurements of the mass distribution of the hadronic system in semileptonic B decays. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson from $\Upsilon(4 S) \rightarrow B \bar{B}$ events. In one approach, we combine the inclusive $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ rate, integrated up to a maximum hadronic mass $m_{X}<1.67 \mathrm{GeV} / c^{2}$, with a measurement of the inclusive $B \rightarrow X_{s} \gamma$ photon energy spectrum. We obtain $\left|V_{u b}\right|=\left(4.43 \pm 0.38_{\text {stat }} \pm 0.25_{\text {syst }} \pm 0.29_{\text {theo }}\right) \times 10^{-3}$. In another approach we measure the total $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ rate over the full phase space and find $\left|V_{u b}\right|=(3.84 \pm$ $\left.0.70_{\text {stat }} \pm 0.30_{\text {syst }} \pm 0.10_{\text {theo }}\right) \times 10^{-3}$.

DOI: 10.1103/PhysRevLett.96.221801
The measurement of the element $V_{u b}$ of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix [1] plays a critical role in testing the consistency of the standard model description of $C P$ violation. The uncertainties in existing measurements $[2,3]$ are dominantly due to uncertainties in the b-quark mass m_{b} and the modeling of the Fermi motion of the b quark inside the \bar{B} meson [4]. In this Letter, we present two techniques to extract $\left|V_{u b}\right|$ from inclusive $\bar{B} \rightarrow$ $X_{u} \ell \bar{\nu}$ [5] decays where these uncertainties are significantly reduced. Neither method has been previously implemented experimentally.

Leibovich, Low, and Rothstein (LLR) have presented a prescription to extract $\left|V_{u b}\right|$ with reduced model dependence from either the lepton energy or the hadronic mass m_{X} [6]. A technique utilizing weight functions had been proposed previously by Neubert [4]. The calculations of LLR are accurate up to corrections of order α_{s}^{2} and $\left[\Lambda m_{B} /\left(\zeta m_{b}\right)\right]^{2}$, where ζ is the experimental maximum hadronic mass up to which the $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decay rate is determined and $\Lambda \approx \Lambda_{\mathrm{QCD}}$. This method combines the hadronic mass spectrum, integrated below ζ, with the high-energy end of the measured differential $B \rightarrow X_{s} \gamma$ photon energy spectrum via the calculations of LLR.

An alternative method [7] to reduce the model dependence is to measure the $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ rate over the entire m_{X} spectrum. Since no extrapolation is necessary to obtain the full rate, systematic uncertainties from m_{b} and Fermi motion are much reduced. Perturbative corrections are known to order α_{s}^{2}. We extract the $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ rate from the hadronic mass spectrum up to $\zeta=2.5 \mathrm{GeV} / c^{2}$ which corresponds to about 96% of the simulated hadronic mass spectrum.

The measurements presented here are based on a sample of $88.9 \times 10^{6} B \bar{B}$ pairs collected near the $\Upsilon(4 S)$ resonance by the $B A B A R$ detector [8] at the PEP-II asymmetricenergy $e^{+} e^{-}$storage rings operating at SLAC. The analysis uses $\mathrm{Y}(4 S) \rightarrow B \bar{B}$ events in which one of the B mesons decays hadronically and is fully reconstructed $\left(B_{\mathrm{r}}\right)$ and the other decays semileptonically $\left(\bar{B}_{\mathrm{sl}}\right)$. To reconstruct a large sample of B mesons, we follow the procedure described in Ref. [2] in which charged and neutral hadrons are combined with an exclusively reconstructed D meson to obtain combinations with an energy consistent with a B meson. While this approach results in a low overall event selection efficiency, it allows for the precise determination of the momentum, charge, and flavor of the B_{r} candidates.

PACS numbers: $12.15 . \mathrm{Hh}, 13.20 \mathrm{He}, 14.40 . \mathrm{Nd}$
We use Monte Carlo (MC) simulations of the BABAR detector based on GEANT4 [9] to optimize selection criteria and to determine signal efficiencies and background distributions. Charmless semileptonic $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays are simulated as a combination of resonant three-body decays ($X_{u}=\pi, \rho, \omega, \eta, \eta^{\prime}$) [10], and decays to nonresonant hadronic final states X_{u} [11] for which the hadronization is performed by JETSET7.4 [12]. The effect of Fermi motion is implemented in the simulation using an exponential function [11] with the parameters $m_{b}=4.79 \mathrm{GeV} / c^{2}$ and $\lambda_{1}=-0.24 \mathrm{GeV}^{2} / c^{4}$ [13]. The simulation of the $\bar{B} \rightarrow$ $X_{c} \ell \bar{\nu}$ background uses a heavy quark effective theory parameterization of form factors for $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ [14] and models for $\bar{B} \rightarrow D \pi \ell \bar{\nu}, D^{*} \pi \ell \bar{\nu}$ [15], and $\bar{B} \rightarrow D \ell \bar{\nu}$, $D^{* *} \ell \bar{\nu}$ [10] decays.

Semileptonic \bar{B}_{sl} candidates are identified by the presence of at least one electron or muon with momentum $p_{\ell}^{*}>$ $1 \mathrm{GeV} / c$ in the \bar{B}_{sl} rest frame. For charged B_{r} candidates, we require the charge of the lepton to be consistent with a primary decay of a \bar{B}_{sl}. For neutral B_{r} candidates, both charge-flavor combinations are retained and the average $B^{0}-\vec{B}^{0}$ mixing rate [16] is used to determine the primary lepton yield. Electrons (muons) are identified [17] (Ref. [8]), with a 92% (60-75\%) average efficiency and a hadron misidentification rate ranging between 0.05% and 0.1% ($1-3 \%$).

The hadronic system X in the $\bar{B} \rightarrow X \ell \bar{\nu}$ decays is reconstructed from charged tracks and energy depositions in the calorimeter that are not associated with the B_{r} candidate or the identified lepton. The neutrino four-momentum p_{ν} is estimated from the missing momentum four-vector $p_{\text {miss }}=p_{Y(4 S)}-p_{B_{\mathrm{r}}}-p_{X}-p_{\ell}$, where all momenta are measured in the laboratory frame and $p_{\Upsilon(4 S)}$ refers to the $\Upsilon(4 S)$ momentum.

To select $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ candidates we require exactly one lepton with $p_{\ell}^{*}>1 \mathrm{GeV} / c$ in the event, charge conservation $\left(Q_{X}+Q_{\ell}+Q_{B_{\mathrm{r}}}=0\right)$, and a missing four-momentum consistent with a neutrino hypothesis, i.e., missing mass consistent with zero $\left(-1.0<m_{\text {miss }}^{2}<0.5 \mathrm{GeV}^{2} / c^{4}\right)$, $\left|\mathbf{p}_{\text {miss }}\right|>0.3 \mathrm{GeV} / c$, and $\left|\cos \theta_{\text {miss }}\right|<0.95$, where $\theta_{\text {miss }}$ is the polar angle of the missing momentum three-vector $\mathbf{p}_{\text {miss }}$. These criteria suppress the majority of $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ decays that contain additional neutrinos or an undetected K_{L}^{0} meson. Additionally we reject events with charged or neutral kaons (reconstructed as $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays) in the decay products of the \bar{B}_{sl}. We suppress $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$
backgrounds by partial reconstruction of charged and neutral D^{*} mesons via identification of charged and neutral slow pions. The reconstruction of the mass of the hadronic system is improved by a kinematic fit that imposes fourmomentum conservation, the equality of the masses of the two B mesons, and $p_{\nu}^{2}=0$. The resulting m_{X} resolution is $\sim 250 \mathrm{MeV} / c^{2}$ on average.

The extraction of $\left|V_{u b}\right| /\left|V_{t s}\right|$ from the selected events starts from the equation [6]

$$
\begin{equation*}
\frac{\left|V_{u b}\right|}{\left|V_{t s}\right|}=\left\{\frac{6 \alpha\left(1+H_{\text {mix }}^{\gamma}\right)\left(C_{7}^{(0)}\right)^{2}}{\pi\left[I_{0}(\zeta)+I_{+}(\zeta)\right]} \delta \mathcal{R}_{u}(\zeta)\right\}^{1 / 2} \tag{1}
\end{equation*}
$$

where $\delta \mathcal{R}_{u}(\zeta)$ is the partial charmless semileptonic decay rate extracted from the number of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ events up to a limit ζ in the m_{X} spectrum. $H_{\text {mix }}^{\gamma}$ accounts for interferences between electromagnetic penguin operator O_{7} with O_{2} and O_{8} [18], and $C_{7}^{(0)}$ is the effective Wilson coefficient. The terms $I_{0}(\zeta)$ and $I_{+}(\zeta)$ are determined by multiplying the photon energy spectrum $d \Gamma^{\gamma} / d E_{\gamma}$ in $B \rightarrow$ $X_{s} \gamma$ decays [13] with weight functions [6] and integrating. The weights are zero below a minimum photon energy $E_{\gamma}^{\min }=m_{B} / 2-\zeta / 4$.
In terms of measurable quantities, $\delta \mathcal{R}_{u}(\zeta)$ is

$$
\begin{equation*}
\delta \mathcal{R}_{u}(\zeta)=\frac{N_{u}(\zeta) f(\zeta) \mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})}{N_{\mathrm{sl}} \varepsilon_{u}(\zeta)} \frac{\varepsilon_{\ell}^{\mathrm{sl}}}{\varepsilon_{\ell}^{u}} \frac{\varepsilon_{\text {reco }}^{\mathrm{sl}}}{\varepsilon_{\text {reco }}^{u}} . \tag{2}
\end{equation*}
$$

Here, $N_{u}(\zeta)$ is the number of reconstructed $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ events with $m_{X}<\zeta, f(\zeta)$ accounts for migration in and out of the region below ζ due to finite m_{X} resolution, $\mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})$ is the total inclusive semileptonic branching fraction, and $\varepsilon_{u}(\zeta)$ is the efficiency for selecting $\bar{B} \rightarrow$ $X_{u} \ell \bar{\nu}$ decays once a $\bar{B} \rightarrow X \ell \bar{\nu}$ decay has been identified with a hadronic mass below ζ. N_{sl} is the number of observed fully reconstructed B meson decays with a charged lepton with momentum above $1 \mathrm{GeV} / c, \varepsilon_{\ell}^{\mathrm{sl}} / \varepsilon_{\ell}^{u}$ corrects for the difference in the efficiency of the lepton momentum selection for $\bar{B} \rightarrow X \ell \bar{\nu}$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays, and $\varepsilon_{\text {reco }}^{\mathrm{sl}} / \varepsilon_{\text {reco }}^{u}$ accounts for the difference in the efficiency of reconstructing a B_{r} in events with a $\bar{B} \rightarrow X \ell \bar{\nu}$ and $\bar{B} \rightarrow$ $X_{u} \ell \bar{\nu}$ decay. By measuring the ratio of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ events to all semileptonic B decays many systematic uncertainties cancel out.
We derive $N_{u}(\zeta)$ from the m_{X} distribution with a binned χ^{2} fit to four components: data, $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ signal MC simulations, $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ background MC simulations, and a small MC background from other sources (misidentified leptons, $\bar{B} \rightarrow X \tau \bar{\nu}_{\tau}$, and charm decays), fixed relative to the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ component. $N_{u}(\zeta)$ is determined after the subtraction of the fitted background contributions. For all four contributions, the combinatorial background is determined, separately in each bin of the m_{X} distribution, with unbinned maximum likelihood fits to distributions of the beam energy-substituted mass $m_{\mathrm{ES}}=\sqrt{s / 4-\mathbf{p}_{B}^{2}}$ of the B_{r}
candidate, where \sqrt{s} is the $e^{+} e^{-}$center-of-mass energy. The m_{ES} fit uses an empirical description of the combinatorial background shape [19] with a signal shape [20] peaking at the B meson mass. The combinatorial background varies from 5\% (low m_{X} bins) to 25% (high m_{X} bins). The fitted m_{X} distributions are shown in Fig. 1(a) before and in Fig. 1(b) after subtraction of backgrounds. The m_{X} bins are $300 \mathrm{MeV} / c^{2}$ wide except that one bin is widened such that its upper edge is at ζ.

We extract $N_{\text {sl }}=(3.253 \pm 0.024) \times 10^{4}$ from an unbinned maximum likelihood fit to the m_{ES} distribution of all events with $p_{\ell}^{*}>1 \mathrm{GeV} / c$. The efficiency corrections $\varepsilon_{\ell}^{\text {sl }} / \varepsilon_{\ell}^{u}=0.82 \pm 0.02_{\text {stat }}$, as well as $\varepsilon_{u}(\zeta)$ and $f(\zeta)$ (see Table I) are derived from simulations, where we also find $\varepsilon_{\text {reco }}^{\text {sl }} / \varepsilon_{\text {reco }}^{u}$ in agreement with one, assigning a 3% uncertainty.

We study three categories of systematic uncertainties in the determination of $\left|V_{u b}\right|$: uncertainties in the signal extraction, the simulation of physics processes, and the theoretical description. The quoted uncertainties have been determined for a value of $\zeta=1.67 \mathrm{GeV} / c^{2}$ where the total uncertainty on $\left|V_{u b}\right|$ is found to be minimal.

Experimental uncertainties in the signal extraction arise from imperfect description of data by the detector simulation. We assign $0.5 \%(0.5 \%, 0.8 \%)$ for the particle identification of electrons ($\mu, K^{ \pm}$), 0.7% for the reconstruction efficiency of charged particles, and 0.8% for the resolution and reconstruction efficiency of neutral particles. An additional 0.9% uncertainty is due to imperfect simulation of K_{L}^{0} interactions. By changing the function describing the signal shape in m_{ES} to a Gaussian function and switching from an unbinned to a binned fit method we derive an uncertainty of 2.2%. An uncertainty of 0.8% is determined by letting the contribution from other sources (see above) to the m_{X} spectrum float freely in the minimum- χ^{2} fit. The uncertainties on the inclusive $B \rightarrow X_{s} \gamma$ photon energy

FIG. 1 (color online). The m_{X} distributions (without combinatorial backgrounds) for $\bar{B} \rightarrow X \ell \bar{\nu}$ candidates: (a) data (points) and fit components after the minimum- χ^{2} fit, and (b) data and signal MC simulations after subtraction of the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ and other backgrounds. The upper edge of the eighth bin is chosen to be at $m_{X}=2.5 \mathrm{GeV} / c^{2}$. This fit result, with $\chi^{2}=10.2$ for 11 degrees of freedom, is used to extract the number of signal events below $2.5 \mathrm{GeV} / c^{2}$.

TABLE I. Quantities in Eq. (2) that depend on ζ and their statistical uncertainties. The LLR (full rate) technique is given in the first (second) column.

ζ	$1.67 \mathrm{GeV} / c^{2}$	$2.50 \mathrm{GeV} / c^{2}$
f	1.010 ± 0.005	0.998 ± 0.002
N_{u}	120 ± 17	135 ± 45
ε_{u}	0.231 ± 0.005	0.231 ± 0.004
$\delta \mathcal{R}_{u} \times 10^{3}$	1.43 ± 0.21	1.59 ± 0.53

spectrum are propagated including the full correlation matrix between the individual bins.

The second category of systematic uncertainties arises from imperfections in the composition and dynamics of decays in the simulation, both in signal and background. The uncertainties in the branching fractions of $B \rightarrow$ $D^{(*, *)} l \bar{\nu} X$ decays [16] contribute 0.7%. The uncertainties in the form factors in $B \rightarrow D^{*} l \bar{\nu}$ decays [14] introduce a 0.3% uncertainty. Branching fractions of D-meson decay channels [16] contribute 0.2%. The relative contribution of the nonresonant final states has been varied by 20% resulting in an uncertainty of 0.5%. The branching fractions of the resonant final states have been varied by $\pm 30 \%(\pi, \rho)$, $\pm 40 \%(\omega)$, and $\pm 100 \%$ (η and η^{\prime} simultaneously) resulting in an uncertainties of 1.0%. An uncertainty of 0.7% due to imperfect description of hadronization is determined from the change observed when we saturate the spectrum with the nonresonant component alone. We derive a 1.3% uncertainty due to the imperfect modeling of the $K \bar{K}$ content in the X_{u} system by varying the fraction of decays to $s \bar{s}$ pairs by 30% for the nonresonant contribution [21]. Even though the extraction of $\left|V_{u b}\right|$ does not explicitly depend on a model for Fermi motion, there is still a residual dependency via the simulation of signal events. By varying the Fermi motion parameters m_{b} and λ_{1} within their respective uncertainties, taking correlations into account [13], we derive an uncertainty of 3.5%.

We calculate theoretical uncertainties in the weighting technique by varying the input parameters and repeating the weighting procedure including the calculation of all

TABLE II. Summary of results and uncertainties on $\left|V_{u b}\right|$ for both approaches. The LLR (full rate) technique is given in the first (second) column.

$\zeta\left[\mathrm{GeV} / c^{2}\right]$	1.67	2.5
$\left\|V_{u b}\right\| \times 10^{3}$	4.43	3.84
$\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ stat.	7.7%	18.2%
Experimental syst.	3.3%	3.6%
Background model	1.0%	3.8%
Signal model	3.9%	5.6%
Theoretical	6.2%	2.6%
$B \rightarrow X_{s} \gamma$ (stat., syst.)	$3.5 \%, 2.0 \%$	\cdots
$\left\|V_{c b}\right\|$ (exp., theo.)	$1.0 \%, 1.7 \%$	\cdots

variables: $H_{\text {mix }}^{\gamma}, \alpha_{S}$, and Wilson-coefficients. We vary α between $\alpha\left(m_{b}\right)$ and $\alpha\left(m_{W}\right)$ with a central value of $1 / 130.3$ and find an uncertainty of less than 1%. For perturbative effects, an uncertainty of 2.9% is derived by varying the renormalization scale μ between $m_{b} / 2$ and $2 m_{b}$. Nonperturbative effects are expected to be of the order $\left[\Lambda m_{B} /\left(\zeta m_{b}\right)\right]^{2}$, where $\Lambda=500 \mathrm{MeV} / c^{2}$ [22], resulting in an uncertainty of 5.4%. Theoretical uncertainties in the measurement via the full rate are taken from Ref. [23] to be 1.2% (QCD) and 2.2% (HQE). Table II provides a summary of the uncertainties for $\zeta=1.67 \mathrm{GeV} / c^{2}$ and for $\zeta=2.5 \mathrm{GeV} / c^{2}$.

Finally, we present two different determinations of $\left|V_{u b}\right|$. First, using the weighting technique with the photon energy spectrum in $B \rightarrow X_{s} \gamma$ decays from Ref. [13], the hadronic mass spectrum up to a value of $\zeta=$ $1.67 \mathrm{GeV} / c^{2}$, we find $\left|V_{u b}\right| /\left|V_{t s}\right|=0.107 \pm 0.009_{\text {stat }} \pm$ $0.006_{\text {syst }} \pm 0.007_{\text {theo }}$. If we assume the Cabibbo-Kobayashi-Maskawa matrix is unitary then $\left|V_{t s}\right|=$ $\left|V_{c b}\right| \times[1 \pm \mathcal{O}(1 \%)]$ and, taking $\left|V_{c b}\right|$ from Ref. [24], we derive

$$
\left|V_{u b}\right|=(4.43 \pm 0.38 \pm 0.25 \pm 0.29) \times 10^{-3}
$$

where the first error is the statistical uncertainty from $\bar{B} \rightarrow$ $X_{u} \ell \bar{\nu}$ and from $B \rightarrow X_{s} \gamma$ added in quadrature, the second (third) is systematic (theoretical). Second, we determine $\left|V_{u b}\right|$ from a measurement of the full m_{X} spectrum, i.e., up to a value of $\zeta=2.5 \mathrm{GeV} / c^{2}$, and find $\left|V_{u b}\right|=(3.84 \pm$ $\left.0.70_{\text {stat }} \pm 0.30_{\text {syst }} \pm 0.10_{\text {theo }}\right) \times 10^{-3}$, using the average B lifetime of $\tau_{B}=(1.604 \pm 0.012) \mathrm{ps}[16,25]$.

The weighting technique is expected to break down at low values of ζ, since only a small fraction of the phase space is used. Figure 2 illustrates the dependence of the result, and its statistical and theoretical uncertainties, on variations of ζ and also compares it with the value of $\left|V_{u b}\right|$ determined from the full rate. The weighting technique

FIG. 2 (color online). $\left|V_{u b}\right|$ as a function of ζ with the LLR method (left) and for the determination with the full rate measurement (right). The error bars indicate the statistical uncertainty. They are correlated between the points and get larger for larger ζ due to larger background from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$. The total shaded area illustrates the theoretical uncertainty; the inner light shaded (yellow online) area indicates the perturbative share of the uncertainty. The arrow indicates $\zeta=1.67 \mathrm{GeV} / c^{2}$.
appears to be stable down to $\zeta \sim 1.4 \mathrm{GeV} / c^{2}$. The current uncertainties on the $B \rightarrow X_{s} \gamma$ photon energy spectrum limit the sensitivity with which the behavior at high ζ can be probed.

The above results are consistent with previous measurements [2,3] but have substantially smaller uncertainties from m_{b} and the modeling of Fermi motion. Both techniques are based on theoretical calculations that are distinct from other calculations normally employed to extract $\left|V_{u b}\right|$ and, thus, provide a complementary determination of $\left|V_{u b}\right|$.

We wish to thank Adam Leibovich, Ian Low, and Ira Rothstein for their help and support. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.
*Also with the Johns Hopkins University, Baltimore, MD 21218, USA
${ }^{\dagger}$ Also at Laboratoire de Physique Corpusculaire, ClermontFerrand, France
${ }^{\ddagger}$ Also with Dipartimento di Fisica, Università di Perugia, Perugia, Italy
${ }^{\S}$ Now at Institute for Particle Physics, ETH Zürich, CH-8093 Zürich, Switzerland
"Also with Università della Basilicata, Potenza, Italy
${ }^{\text {II }}$ Deceased
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 92, 071802 (2004).
[3] A. Bornheim et al. (CLEO Collaboration), Phys. Rev. Lett. 88, 231803 (2002); B. Aubert et al. (BABAR Collaboration), ibid. 95, 111801 (2005); I. Bizjak et al. (BELLE Collaboration), Phys. Rev. Lett. 95, 241801 (2005);
H. Kakuno et al. (BELLE Collaboration), ibid. 92, 101801 (2004); A. Limosani et al. (BELLE Collaboration), Phys. Lett. B 621, 28 (2005); B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 012006 (2006); hep-ex/0507017.
[4] M. Neubert, Phys. Rev. D 49, 4623 (1994); I. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, Int. J. Mod. Phys. A 9, 2467 (1994).
[5] Charge conjugation is implied throughout the Letter.
[6] A. K. Leibovich, I. Low, and I. Z. Rothstein, Phys. Rev. D 61, 053006 (2000); 62, 014010 (2000); Phys. Lett. B 486, 86 (2000); 513, 83 (2001).
[7] We follow the prescription on p. 794 of [16], based on N. Uraltsev, Int. J. Mod. Phys. A 14, 4641 (1999); A. H. Hoang, Z. Ligeti, and A. V. Manohar, Phys. Rev. D 59, 074017 (1999).
[8] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[9] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[10] D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995).
[11] F. De Fazio and M. Neubert, J. High Energy Phys. 06 (1999) 017.
[12] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[13] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 052004 (2005).
[14] B. Aubert et al. (BABAR Collaboration), hep-ex/0409047.
[15] J. L. Goity and W. Roberts, Phys. Rev. D 51, 3459 (1995).
[16] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 67, 031101 (2003).
[18] C. Greub, T. Hurth, and D. Wyler, Phys. Lett. B 380, 385 (1996).
[19] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 48, 543 (1990).
[20] T. Skwarnicki (Crystal Ball Collaboration) DESY Report No. F31-86-02.
[21] M. Althoff et al. (TASSO Collaboration), Z. Phys. C 27, 27 (1985).
[22] A. K. Leibovich, I. Low, and I.Z. Rothstein (private communication).
[23] O. Buchmüller and H. Flächer, Phys. Rev. D 73, 073008 (2006).
[24] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 011803 (2004).
[25] The impact of the uncertainty of the relative fraction of produced neutral and charged B mesons is negligible.

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Dipartimento di Fisica and INFN, Università di Bari, I-70126 Bari, Italy
 ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ Institute of Physics, University of Bergen, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA

