6,940 research outputs found

    Discrete-Time Fractional Variational Problems

    Full text link
    We introduce a discrete-time fractional calculus of variations on the time scale hZh\mathbb{Z}, h>0h > 0. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that solutions to the considered fractional problems become the classical discrete-time solutions when the fractional order of the discrete-derivatives are integer values, and that they converge to the fractional continuous-time solutions when hh tends to zero. Our Legendre type condition is useful to eliminate false candidates identified via the Euler-Lagrange fractional equation.Comment: Submitted 24/Nov/2009; Revised 16/Mar/2010; Accepted 3/May/2010; for publication in Signal Processing

    Automatic camera pose initialization, using scale, rotation and luminance invariant natural feature tracking

    Get PDF
    The solution to the camera registration and tracking problem serves Augmented Reality, in order to provide an enhancement to the user’s cognitive perception of the real world and his/her situational awareness. By analyzing the five most representative tracking and feature detection techniques, we have concluded that the Camera Pose Initialization (CPI) problem, a relevant sub-problem in the overall camera tracking problem, is still far from being solved using straightforward and non-intrusive methods. The assessed techniques often use user inputs (i.e. mouse clicking) or auxiliary artifacts (i.e. fiducial markers) to solve the CPI problem. This paper presents a novel approach to real-time scale, rotation and luminance invariant natural feature tracking, in order to solve the CPI problem using totally automatic procedures. The technique is applicable for the case of planar objects with arbitrary topologies and natural textures, and can be used in Augmented Reality. We also present a heuristic method for feature clustering, which has revealed to be efficient and reliable. The presented work uses this novel feature detection technique as a baseline for a real-time and robust planar texture tracking algorithm, which combines optical flow, backprojection and template matching techniques. The paper presents also performance and precision results of the proposed technique.info:eu-repo/semantics/publishedVersio

    Registo da avaliação da dor em sistema de informação: um projeto em desenvolvimento

    Get PDF
    Poster apresentado nas I Jornadas do Mestrado em Enfermagem de Saúde Infantil e Pediatria, organizadas pela Escola Superior de Enfermagem do Port

    Discrete wavelet analysis of the influence of the North Atlantic Oscillation on Baltic Sea level

    Get PDF
    Mean sea level (MSL) in the Baltic Sea is influenced by several factors and therefore presents a complex behaviour over a wide range of time-scales. This work performs a multi-scale analysis of MSL variability in the Baltic Sea using discrete wavelet analysis. The North Atlantic Oscillation (NAO) is well known for having a strong influence in MSL variability over the Baltic; however, the relationship between MSL and NAO at different time-scales is still little understood. In this work a comparison of MSL and NAO variability is performed for a wide range of temporal scales, uncovering distinct relationships in high-frequency and long-term temporal variability. The annual and sub-annual scales are found to account for more than 50% of the total MSL variability. The MSL annual cycle is analysed and a shift from low to high amplitude values is identified in the 1970s for most stations. MSL is found to be anti-correlated to NAO at short time-scales while on the long-term NAO and MSL appear to be positively correlated for most stations. The physical mechanisms behind these distinct relationships deserve deeper study

    Infrared tracking system for immersive virtual environments

    Get PDF
    In this paper, we describe the theoretical foundations and engineering approach of an infrared-optical tracking system specially design for large scale immersive virtual environments (VE) or augmented reality (AR) settings. The system described is capable of tracking independent retro-reflective markers arranged in a 3D structure (ar-tefact) in real time (25Hz), recovering all possible 6 Degrees of Freedom (DOF). These artefacts can be ad-justed to the user’s stereo glasses to track his/her pose while immersed in the VE or AR, or can be used as a 3D input device. The hardware configuration consists in 4 shutter-synchronized cameras attached with band-pass infrared filters and the artefacts are illuminated by infrared array-emitters. The system was specially designed to fit a room with sizes of 5.7m x 2.7m x 3.4 m, which match the dimensions of the CAVE-Hollowspace of Lousal where the system will be deployed. Pilot lab results have shown a latency of 40ms in tracking the pose of two ar-tefacts with 4 infrared markers, achieving a frame-rate of 24.80 fps and showing a mean accuracy of 0.93mm/0.52º and a mean precision of 0.08mm/0.04º, respectively, in overall translation/rotation DOFs, fulfill-ing the system requirements initially defined.info:eu-repo/semantics/publishedVersio

    Semi-automatic 3D reconstruction of urban areas using epipolar geometry and template matching

    Get PDF
    WOS:000240143800002 (Nº de Acesso Web of Science)In this work we describe a novel technique for semi-automatic three-dimensional (3D) reconstruction of urban areas, from airborne stereo-pair images whose output is VRML or DXF. The main challenge is to compute the relevant information—building's height and volume, roof's description, and texture—algorithmically, because it is very time consuming and thus expensive to produce it manually for large urban areas. The algorithm requires some initial calibration input and is able to compute the above-mentioned building characteristics from the stereo pair and the availability of the 2D CAD and the digital elevation model of the same area, with no knowledge of the camera pose or its intrinsic parameters. To achieve this, we have used epipolar geometry, homography computation, automatic feature extraction and we have solved the feature correspondence problem in the stereo pair, by using template matching
    • …
    corecore