616 research outputs found
Suppression of electron scattering resonances in graphene by quantum dots
Transmission of low-energetic electrons through two-dimensional materials
leads to unique scattering resonances. These resonances contribute to
photoemission from occupied bands where they appear as strongly dispersive
features of suppressed photoelectron intensity. Using angle-resolved
photoemission we have systematically studied scattering resonances in epitaxial
graphene grown on the chemically differing substrates Ir(111), Bi/Ir, Ni(111)
as well as in graphene/Ir(111) nanopatterned with a superlattice of uniform Ir
quantum dots. While the strength of the chemical interaction with the substrate
has almost no effect on the dispersion of the scattering resonances, their
energy can be controlled by the magnitude of charge transfer from/to graphene.
At the same time, a superlattice of small quantum dots deposited on graphene
eliminates the resonances completely. We ascribe this effect to a
nanodot-induced buckling of graphene and its local rehybridization from
sp to sp towards a three-dimensional structure. Our results suggest
nanopatterning as a prospective tool for tuning optoelectronic properties of
two-dimensional materials with graphene-like structure.Comment: The following article has been submitted to Applied Physics Letters.
If it is published, it will be found online at http://apl.aip.or
Rashba splitting of 100 meV in Au-intercalated graphene on SiC
Intercalation of Au can produce giant Rashba-type spin-orbit splittings in
graphene but this has not yet been achieved on a semiconductor substrate. For
graphene/SiC(0001), Au intercalation yields two phases with different doping.
Here, we report the preparation of an almost pure p-type graphene phase after
Au intercalation. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9
eV binding energy. We show that this giant splitting is due to hybridization
and much more limited in energy and momentum space than for Au-intercalated
graphene on Ni
Laser-induced persistent photovoltage on the surface of a ternary topological insulator at room temperature
Using time- and angle-resolved photoemission, we investigate the ultrafast
response of excited electrons in the ternary topological insulator (BiSb)Te to fs-infrared pulses. We demonstrate that at the
critical concentration =0.55, where the system becomes bulk insulating, a
surface voltage can be driven at room temperature through the topological
surface state solely by optical means. We further show that such a photovoltage
persists over a time scale that exceeds 6 s, i.e, much longer than
the characteristic relaxation times of bulk states. We attribute the origin of
the photovoltage to a laser-induced band-bending effect which emerges near the
surface region on ultrafast time scales. The photovoltage is also accompanied
by a remarkable increase in the relaxation times of excited states as compared
to undoped topological insulators. Our findings are relevant in the context of
applications of topological surface states in future optical devices.Comment: 5 pages, 4 figure
Ultrafast spin polarization control of Dirac fermions in topological insulators
Three-dimensional topological insulators (TIs) are characterized by
spin-polarized Dirac-cone surface states that are protected from backscattering
by time-reversal symmetry. Control of the spin polarization of topological
surface states (TSSs) using femtosecond light pulses opens novel perspectives
for the generation and manipulation of dissipationless surface spin currents on
ultrafast timescales. Using time-, spin-, and angle-resolved spectroscopy, we
directly monitor for the first time the ultrafast response of the spin
polarization of photoexcited TSSs to circularly-polarized femtosecond pulses of
infrared light. We achieve all-optical switching of the transient out-of-plane
spin polarization, which relaxes in about 1.2 ps. Our observations establish
the feasibility of ultrafast optical control of spin-polarized Dirac fermions
in TIs and pave the way for novel optospintronic applications at ultimate
speeds.Comment: 9 pages, 4 figure
Photoemission of BiSe with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?
Topological insulators are characterized by Dirac cone surface states with
electron spins aligned in the surface plane and perpendicular to their momenta.
Recent theoretical and experimental work implied that this specific spin
texture should enable control of photoelectron spins by circularly polarized
light. However, these reports questioned the so far accepted interpretation of
spin-resolved photoelectron spectroscopy. We solve this puzzle and show that
vacuum ultraviolet photons (50-70 eV) with linear or circular polarization
probe indeed the initial state spin texture of BiSe while circularly
polarized 6 eV low energy photons flip the electron spins out of plane and
reverse their spin polarization. Our photoemission calculations, considering
the interplay between the varying probing depth, dipole selection rules and
spin-dependent scattering effects involving initial and final states explain
these findings, and reveal proper conditions for light-induced spin
manipulation. This paves the way for future applications of topological
insulators in opto-spintronic devices.Comment: Submitted for publication (2013
Band Renormalization of Blue Phosphorus on Au 111
Most recently, theoretical calculations predicted the stability of a novel two dimensional phosphorus honeycomb lattice named blue phosphorus. Here, we report on the growth of blue phosphorus on Au 111 and unravel its structural details using diffraction, microscopy and theoretical calculations. Most importantly, by utilizing angle resolved photoemission spectroscopy we identify its momentum resolved electronic structure. We find that Au 111 breaks the sublattice symmetry of blue phosphorus leading to an orbital dependent band renormalization upon the formation of a 4 4 superstructure. Notably, the semiconducting two dimensional phosphorus realizes its valence band maximum at 0.9 eV binding energy, however, shifted in momentum space due to the substrate induced band renormalizatio
Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds
Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols). In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM) exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M) are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy studies indicated that the bioreduction of the Ag- ions takes place through their interactions with free amines, carboxylate ions, and hydroxyl groups. As a consequence of such interactions, residues of proteins and polyphenols cap the biosynthesized Ag nanoparticles providing them a hybrid core/shell structure. In addition, these biosynthesized Ag nanomaterials exhibited size-dependent plasmon extinction bands and enhanced bactericidal activities against both Gram-positive and Gram-negative bacteria, displaying minimal inhibitory Ag concentrations lower than typical values reported in the literature for Ag nanoparticles, probably due to the synergy of the bactericidal activities of the Ag nanoparticle cores and their capping ligandsSEP CB12-17948
About the strength of correlation effects in the electronic structure of iron
The strength of electronic correlation effects in the spin-dependent
electronic structure of ferromagnetic bcc Fe(110) has been investigated by
means of spin and angle-resolved photoemission spectroscopy. The experimental
results are compared to theoretical calculations within the three-body
scattering approximation and within the dynamical mean-field theory, together
with one-step model calculations of the photoemission process. This comparison
indicates that the present state of the art many-body calculations, although
improving the description of correlation effects in Fe, give too small mass
renormalizations and scattering rates thus demanding more refined many-body
theories including non-local fluctuations.Comment: 4 pages, 4 figure
Robust Tracking of Bio-Inspired References for a Biped Robot Using Geometric Algebra and Sliding Modes
Controlling walking biped robots is a challenging
problem due to its complex and uncertain dynamics. In order
to tackle this, we propose a sliding mode controller based on a
dynamic model which was obtained using the conformal
geometric algebra approach (CGA). The CGA framework
permits us to use lines, points, and other geometric entities, to
obtain the Lagrange equations of the system. The references
for the joints of the robot were bio-inspired in the kinematics of
a walking human body. The first and second derivatives of the
reference signal were obtained through an exact robust
differentiator based on high order sliding modes. The
performance of the proposed control scheme is illustrated
through simulation.CINVESTA
- …
