
Instituto Tecnológico y de Estudios Superiores de Occidente

 

2013-05-10 

Robust Tracking of Bio-Inspired References

for a Biped Robot Using Geometric Algebra

and Sliding Modes
 

Oviedo-Barriga, J.; Carbajal-Espinosa, O.; González-Jiménez, Luis E.;

Castillo-Toledo, Bernardino; Bayro-Corrochano, Eduardo
 
Oviedo-Barriga, J.; Carbajal-Espinosa, O.; González-Jiménez, L.E.; Castillo-Toledo, B.; Bayro-

Corrochano, E. (2013). Robust Tracking of Bio-Inspired References for a Biped Robot Using

Geometric Algebra and Sliding Modes.  IEEE International Conference on Robotics and Automation

(ICRA)

 

 

Enlace directo al documento: http://hdl.handle.net/11117/2582

 

Este documento obtenido del Repositorio Institucional del Instituto Tecnológico y de Estudios Superiores de

Occidente se pone a disposición general bajo los términos y condiciones de la siguiente licencia:

http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf

 

(El documento empieza en la siguiente página)

Repositorio Institucional del ITESO rei.iteso.mx

Departamento de Electrónica, Sistemas e Informática DESI - Artículos y ponencias con arbitraje

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional del ITESO

https://core.ac.uk/display/47248025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iteso.mx
http://rei.iteso.mx
http://hdl.handle.net/11117/2582
http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf


  

Abstract— Controlling walking biped robots is a challenging 
problem due to its complex and uncertain dynamics. In order 
to tackle this, we propose a sliding mode controller based on a 
dynamic model which was obtained using the conformal 
geometric algebra approach (CGA). The CGA framework 
permits us to use lines, points, and other geometric entities, to 
obtain the Lagrange equations of the system. The references 
for the joints of the robot were bio-inspired in the kinematics of 
a walking human body. The first and second derivatives of the 
reference signal were obtained through an exact robust 
differentiator based on high order sliding modes. The 
performance of the proposed control scheme is illustrated 
through simulation. 

I. INTRODUCTION 
The control of bipedal walking robot is a complex task 

due to several degrees of freedom, highly nonlinear 
dynamics, and a complicated model to describe the behavior 
of the walking robot. For this reason, we analyze each leg of 
the biped robot as a serial robotic system and synthesize the 
dynamic model via the Lagrange equations using the 
conformal geometric (CGA) approach. The CGA approach 
allows us to obtain, through a simple procedure, a compact 
representation of the dynamics of a robotic mechanism. This 
is due to the simple representation of rigid transformations 
(rotations, translations, screw motions and others) and 
geometric entities (points, lines, planes, circles, spheres, 
point pairs, etc) in this framework [1]. 

The references for each joint of the biped robot were 
obtained using the Humanoid Robots Simulation Platform 
(HRSP) [2], a Simulink Toolbox developed by the group of 
Aleksandar Rodic [3].  

Then, a sliding mode controller was designed to perform 
tracking of the bio-inspired references for the biped robot. 
Sliding mode control is widely used in uncertain or 
disturbed systems, featuring robustness and accuracy [4]. An 
important drawback of the standard sliding mode controller 
is the presence of high frequency components in the control 
signals due to the switching function used in its design. In 
order to attenuate this effect we use sigmoid functions in the 
proposed controller. 
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45015 México. 
(e-mail: joviedo1, ocarbajal2, lgonzale3, toledo4, edb5@ gdl.cinvestav.mx). 

The document is organized as follows. Section II presents 
an introduction to the Conformal Geometric Algebra. The 
dynamic model for the pose of robotic manipulators is 
obtained in Section III. The design of the error variables and 
sliding mode controller in CGA are defined in Section IV. 
Also, the structure for the exact robust differentiator is 
presented. Section V shows the application of the designed 
controllers in a 12 DOF biped robot, via simulation. Finally, 
some conclusions are given in Section VI.  

II. CONFORMAL GEOMETRIC ALGEBRA 

The Euclidean vector space 3  can be represented in 
geometric algebra 4,1G  and treat conformal geometry in an 
advantageous manner [7]. This algebra has an orthonormal 
vector basis given by { }ie  and a bivectorial basis defined as 

= ∧ij i je e e , for { }= ∞, 0,1,2,3,i j .  
The bivectors 23e , 31e  and 12e  correspond to the 

Hamilton basis and ∞= ∧ 0E e e  is the Minkowsky plane. 
The unit Euclidean pseudo-scalar = ∧ ∧1 2 3eI e e e , the 
pseudo-scalar =c eI I E  is used for computing the inverse 
and duals of multivectors. 

Let = [ , , ]Tex x y z  be a point expressed in 3 . The 
representation of this point in the geometric algebra 4,1G  is 
given by 

 ∞= + +2
0

1
2c e ex x x e e  (1) 

Given two conformal points cx  and cy , its difference in 
Euclidean space can be defined as 
 ( ) ∞− = ∧ ⋅e e c cx y y x e  (2) 
and, consequently, the following equality 
 ( ) ( )∞ ∞∧ + ∧ ⋅ = ∧ ⋅c c c c c cx y y z e x z e  (3) 
 is fulfilled as well. 

The line can be obtained in its standard form as 
 ∞= −e eL nI e mI  (4) 
where n  is the orientation and m  the moment of the line. 
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A. Rigid Transformations 
These transformations between rigid bodies can be obtained 
in conformal geometry by carrying out reflections between 
planes. 

A reflection of a point x  respect to a plane π  is  

 π π −= − 1'x x  (5) 
and for any geometric entity Q  is 

 π π −= 1'Q Q  (6) 
The translation can be carrying out by two reflections 

with parallel planes π1  and π2  as 

 ( ) ( )π π π π ∞−− −
∞= = + =1 1 2

2 1 1 2
1' , 1
2

a a

ae
a

T T

Q Q T ae e  (7) 

with = 2a dn ,  d  the distance of translation and n  the 
direction of translation. 

A rotation is the product of two reflections between 
nonparallel planes π1  and π2  defined by 

 ( ) ( )
θ θ

π π π π− −= 1 1
2 1 1 2'
R R

Q Q  (8) 

or computing the conformal product of the normal of the 
planes 1n  and 2n , yields 

 ( ) ( ) θ
θ θ θ −= = − = 2

2 1 cos 2 sin 2 LR n n L e  (9) 
with = ∧1 2L n n , and θ  twice the angle between π1  and 
π2 . 

The screw motion called motor is a composition of a 
translation and a rotation, both related to an arbitrary axis 
L . The motor is defined as 

 =M TRT  (10) 
Therefore, a motor transformation for an entity Q  is 

given by 

 ( ) ( )
θ θ

='
M M

Q TRT Q TRT  (11) 

A more detailed description of Conformal Geometric 
Algebra can be found in [5] and [6]. 

III. DYNAMIC MODELING USING CGA 
Based on the equations of kinetic and potential energy 

and using the Euler-Lagrange formulation, it is possible to 
synthesize the dynamic model of any n-DOF serial robot 
manipulator in terms of CGA [7]. 

The matrix form of the aforementioned equations is 
given by 
 ( ) ( ) ( ) τ+ + =,M q q C q q q G q  (12) 
Defining , , 'i j im I L  and 'ix  as the mass, moment of 
inertia, current axis of rotation and current position of the 
center of mass for the thi  link of the manipulator, 

respectively, it is possible to re-define equation (12) in the 
CGA framework using the following matrices 
 ( ) = +v IM q M M  (13) 
where 

 δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1

2 2

0 01 1 1
00 1 1

0 0 0

I

n n n

I
I IM I

I I I

 (14) 

and 
 = T

vM V mV  (15) 
with { }= 1 2, , , nm diag m m m  and 

 

⋅⎛ ⎞
⎜ ⎟⋅ ⋅⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

1 1

2 1 2 2

1 2

' ' 0 0
' ' ' ' 0

' ' ' ' ' 'n n n n

x L
x L x LV

x L x L x L

. (16) 

Based in the properties of the matrices ( ) ( ), ,M q C q q  

we can define the matrix ( ),C q q  as 

 = TC V mV  (17) 
where 

 
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

1 1

2 1 2

1 2

' 0 0 ' 0 0
0 ' 0 ' ' 0

0 0 ' ' ' 'n n

x L
x L LV XL

x L L L

. (18) 

Therefore,  
 = +V XL XL  (19) 
where 

 

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

' 0 0
0 ' 0

0 0 'n

x
xX

x

 (20) 

and  

 

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

1 2

1 2

' 0 0
' ' 0

' ' 'n

L
L LL

L L L

. (21) 

Finally, the vector ( )G q  is expressed as the following 
product 
 ( ) = TG q V F  (22) 
with  

 

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

1 2

2 2

2

2

0 0
0 0

0 0 n

m ge
m geF ge

m ge

 (23) 
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where g  is the acceleration due to gravity. For a more 
detailed explanation of the process to obtain (12) see [7]. 

IV. SLIDING MODE CONTROLLER 
In this section, the output tracking problem will be 

developed for the two legs in the biped robot, each with 6-
DOF, and a sliding mode controller will be proposed [8]. 

 Due to space limitation the procedure will be explained 
only for the left leg. 

Adding a disturbance term ( )P t  to (12), we can obtain a 
state-space representation defining the state variables as 

= =1 2,x q x q , the output of the system as = 1y x  and the 
control signal as τ=U . Hence, the resulting state-space 
model is given by 

 ( ) ( )
1 2

1 1
2 2

x x
x M Cx G M U P t− −

=
= − + + +

. (24) 

the parenthesis were omitted for simplicity. We assume that 
the disturbance term ( )P t  is bounded as follows 

 ( )P t β< . (25) 

Defining the output tracking error as 
 ( )= −1 1 refe x y t . (26) 
where refy  is the bio-inspired references for the biped robot 
mentioned in a previous section.  Then, the dynamic for 1e  
is given by 
 ( )= −1 2 refe x y t . (27) 
Using 2x  as the pseudo-control for this block, we obtain its 
reference 2refx as 

 ( ) ( )ε= − +2 1 1 1tanhref refx k e y t . (28) 
Then, if we define the error variable for the second block as 
 = −2 2 2refe x x . (29) 
its dynamics can be obtained as 
 ( ) ( )1 1

2 2 2refe M Cx G M U P t x− −= − + + + − . (30) 
The term 2refx  is defined as 

( )( ) ( )2 1 1 2ref ref refx k x y t y tε= − Φ − +  

with ( ) ( ){ }2 2
1 11 1 11 tanh , , 1 tanh ndiag e eε εΦ = − −  

and 1 11 1
T

ne e e= ⎡ ⎤⎣ ⎦ . 
Finally, we design the control law U as 

 ( )2 2 2 2 2refU Cx G k Msign e Mxε= + − + . (31) 
By means of (31), (30), (28), and (27) the closed loop 
dynamics for the error variables is given by 

  ( )
( ) ( )

1 1 1 1

2 2 2 2

tanhe k e
e k sign e P t

ε
ε

= −
= − +

. (32) 

If the conditions 1 20,k k β> >  are fulfilled, then the 
system (32) is globally asymptotically stable [8]. 

A scheme of our case of study is depicted in figure 1. It is 
a 3-D virtual representation of the MEXONE humanoid 
robot from CINVESTAV, Unidad Guadalajara. Each leg of 
the biped robot has 6 DOF: 3 in the hip, 1 in the knee, and 2 
in the ankle. 

A. Exact Robust Differentiator 
In order to implement the control law defined in (31) we 

need to know the derivatives ( ) ( ),ref refy t y t . Obviously, 
these are unknown terms given that the reference vector 

( )refy t  was obtained from direct measuring from a 
walking person. 

This lacking information can be achieved by means of a 
robust differentiator based on high order sliding modes [9]. 
The structure of a 5th -order differentiator is defined as 
follows 

 

( ) ( )( )
( )
( )
( )

( )
( )

= = − − − +

= = − − − +

= = − − − +

= = − − − +

= = − − − +
= − −

5/6
0 0 0 0 0 1

4/5
1 1 1 1 0 1 0 2

3/4
2 2 2 2 1 2 1 3

2/3
3 3 3 3 2 3 2 4

1/2
4 4 4 4 3 4 3 5

5 5 4

, 12
, 8
, 5
, 3
, 1.5
1.1

ref refz v v z y t sign z y t z
z v v z v sign z v z
z v v z v sign z v z
z v v z v sign z v z
z v v z v sign z v z
z sign z v

 (33) 
 

 
Figure 1. Biped robot with 6-DOF per leg. 

where iz  is the estimated thi  derivative of refy , and whose 
initial value is zero.   

e3

e2

e1
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Figure 2 shows the bio-inspired walking references for 
the 6 joints of the left leg and the output of the robust exact 
differentiator for the first and second derivatives.  

V. SIMULATIONS 
The proposed control law defined in (31) was applied to the 
biped robot depicted in figure 1. The axes of rotation are 
defined in figure 2. 

The initial value of vector q  for the both legs is 

= ⎡ ⎤⎣ ⎦0.05 0.21 0.08 0.62 0.15 0.00003 Tq , 

The gains 1 2,k k  were set as 1 10 1 4 1 4 4 2 Tk = ⋅⎡ ⎤⎣ ⎦  

and 2 10 1 28 1 28 14 4 Tk = ⋅⎡ ⎤⎣ ⎦ , respectively. The 
slopes 1 2,ε ε  were defined as 1 22, 5ε ε= = . 
 

 
Figure 2. Reference signal, first derivative, and second derivative for the six 

joints of each leg. 

 

The initial position for the center of mass of each link are 
7 1 1 2 21 1 1 2 2

2 3 1 2 2 8 3 1 2 2

3 4 1 5 2 9 4 1 5 2

4 4 1 6 2 10 4 1 6 2

5 4 1 7 2 11 4 1 7 2

6 4 1 8 2 12 4 1 8 2

x e ex e e
x e e x e e
x e e x e e
x e e x e e
x e e x e e
x e e x e e

σ σσ σ
σ σ σ σ
σ σ σ σ
σ σ σ σ
σ σ σ σ
σ σ σ σ

= − −= −
= − = − −
= − = − −
= − = − −
= − = − −
= − = − −

 

and the origins of the frames attached to each link of the 
biped robot are the following Euclidean points 

7 9 1 2 21 9 1 2 2

8 4 1 2 22 4 1 2 2

3 4 1 3 2 9 4 1 3 2

4 4 1 10 2 10 4 1 10 2

5 4 1 8 2 6 11 4 1 8 2 12

o e eo e e
o e eo e e

o e e o e e
o e e o e e
o e e o o e e o

σ σσ σ
σ σσ σ

σ σ σ σ
σ σ σ σ
σ σ σ σ

= − −= −
= − −= −

= − = − −
= − = − −
= − = = − − =

 

with 1 2 3 40.024, 0.062, 0.079, 0.110,σ σ σ σ= = = =  

5 6 7 8 90.068, 0.188, 0.417, 0.533, 0.049σ σ σ σ σ= = = = =
 and 10 0.302σ = . 
 
 

 
Figure 3. Axes of rotation of the biped robot. 

 
The initial values for the axes of rotation of the biped 

robot are defined as 
( )
( )
( )
( )
( )
( )

( )
( )
( )
( )
( )
( )

1 23 1 23 7 23 7 23

2 12 2 12 8 12 8 12

3 31 3 31 9 31 9 31

4 23 4 23 10 23 10 23

5 23 5 23 11 23 11 23

6 12 6 12 12 12 12 12

L e e o e L e e o e
L e e o e L e e o e
L e e o e L e e o e
L e e o e L e e o e
L e e o e L e e o e
L e e o e L e e o e

∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞ ∞

= + ⋅ = + ⋅
= + ⋅ = + ⋅
= + ⋅ = + ⋅
= + ⋅ = + ⋅
= + ⋅ = + ⋅
= + ⋅ = + ⋅

 

 
 
 

1L
2L

3L

4L

5L

6L

9L
7L

8L

10L

11L

12L
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Figure 4. Disturbances used in simulation for each joint of left leg. 

 

 
Figure 5. Tracking response for the 6 joints of the left leg. 

 
Due to space limitation, only the simulation results for the 

left leg will be shown. The performance and response for the 
right leg are very similar to the left leg. The disturbance 
signals used in simulation can be appreciated in figure 4. 

The tracking responses for the 6 joints of the left leg are 
depicted in figure 5. It can be observed that the control 
objective is fulfilled and with a low settling time. 

 

 
Figure 6. Error variables. 

 

 
Figure 7. Control signals (joint torques) for the six joints of the left leg 
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Figure 6 shows that the six corresponding error variables 
converge to a small vicinity of zero, demonstrating the 
robustness of the proposed control scheme.  

In figure 7, the control signals (torques) of the joints of 
the left leg are depicted. Finally, a sequence of images of the 
biped robot walking is presented in figure 8. 

 

 
Figure 8. Sequence of images of the biped robot walking. 

VI. CONCLUSIONS 
The authors apply bio-inspired signals as walking waves 

to help the manoeuvring of a humanoid robot.  
The advantage of using such signal is that they help us to 

accomplish an expected human like walking of the robot. 
However this is jeopardized due to the effect of 
perturbations and non-modelled parameters of the robot 
dynamics. 

To follow such trajectories is necessary to resort to a 
robust control technique. In addition the algebraic 
complexity of the formulation is also an issue, which is 
tackled by computing the kinematics and dynamics of the 
plant in the conformal geometric algebra framework. As a 
result, the equations are simple, compact and comfortable to 
design algorithms subject to geometric constraints. In this 
regard, the use of a robust sliding mode controller becomes 
easy and natural.  

We present simulations subject to perturbations (pushing, 
shocking, etc) which confirm the robustness of our control 
scheme. Future work consists of using more advanced 
control techniques and real time implementation. 
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