2,147 research outputs found

    Photometric redshifts and quasar probabilities from a single, data-driven generative model

    Full text link
    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift one can obtain quasar flux-densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques---which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data---and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar--star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84 and 97 percent of the objects with GALEX UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available

    On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data

    Full text link
    With the coming data deluge from synoptic surveys, there is a growing need for frameworks that can quickly and automatically produce calibrated classification probabilities for newly-observed variables based on a small number of time-series measurements. In this paper, we introduce a methodology for variable-star classification, drawing from modern machine-learning techniques. We describe how to homogenize the information gleaned from light curves by selection and computation of real-numbered metrics ("feature"), detail methods to robustly estimate periodic light-curve features, introduce tree-ensemble methods for accurate variable star classification, and show how to rigorously evaluate the classification results using cross validation. On a 25-class data set of 1542 well-studied variable stars, we achieve a 22.8% overall classification error using the random forest classifier; this represents a 24% improvement over the best previous classifier on these data. This methodology is effective for identifying samples of specific science classes: for pulsational variables used in Milky Way tomography we obtain a discovery efficiency of 98.2% and for eclipsing systems we find an efficiency of 99.1%, both at 95% purity. We show that the random forest (RF) classifier is superior to other machine-learned methods in terms of accuracy, speed, and relative immunity to features with no useful class information; the RF classifier can also be used to estimate the importance of each feature in classification. Additionally, we present the first astronomical use of hierarchical classification methods to incorporate a known class taxonomy in the classifier, which further reduces the catastrophic error rate to 7.8%. Excluding low-amplitude sources, our overall error rate improves to 14%, with a catastrophic error rate of 3.5%.Comment: 23 pages, 9 figure

    Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet

    Get PDF
    In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep‐sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep‐sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back‐arc basins, currently of great interest for deep‐sea mineral extraction. A total of 42 loci were sequenced from each individual using high‐throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies

    Human parainfluenza 2 & 4: Clinical and genetic epidemiology in the UK, 2013–2017, reveals distinct disease features and co‐circulating genomic subtypes

    Get PDF
    Background: Human Parainfluenza viruses (HPIV) comprise of four members of the genetically distinct genera of Respirovirus (HPIV1&3) and Orthorubulavirus (HPIV2&4), causing significant upper and lower respiratory tract infections worldwide, particularly in children. However, despite frequent molecular diagnosis, they are frequently considered collectively or with HPIV4 overlooked entirely. We therefore investigated clinical and viral epidemiological distinctions of the relatively less prevalent Orthorubulaviruses HPIV2&4 at a regional UK hospital across four autumn/winter epidemic seasons. Methods: A retrospective audit of clinical features of all HPIV2 or HPIV4 RT-PCR-positive patients, diagnosed between 1st September 2013 and 12th April 2017 was undertaken, alongside sequencing of viral genome fragments in a representative subset of samples. Results: Infection was observed across all age groups, but predominantly in children under nine and adults over 40, with almost twice as many HPIV4 as HPIV2 cases. Fever, abnormal haematology, elevated C-reactive protein and hospital admission were more frequently seen in HPIV2 than HPIV4 infection. Each of the four seasonal peaks of either HPIV2, HPIV4 or both, closely matched that of RSV, occurring in November and December and preceding that of Influenza A. A subset of viruses were partially sequenced, indicating co-circulation of multiple subtypes of both HPIV2&4, but with little variation between each epidemic season or from limited global reference sequences. Conclusions: Despite being closest known genetic relatives, our data indicates a potential difference in associated disease between HPIV2 and HPIV4, with more hospitalisation seen in HPIV2 mono-infected individuals, but a greater overall number of HPIV4 cases

    Retrospective screening of routine respiratory samples revealed undetected community transmission and missed intervention opportunities for SARS-CoV-2 in the United Kingdom.

    Get PDF
    In the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea - also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.Whole genome sequencing of SARS-CoV-2 was funded by COG-UK; COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research and Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute

    Age and distraction are determinants of performance on a novel visual search task in aged Beagle dogs

    Get PDF
    Aging has been shown to disrupt performance on tasks that require intact visual search and discrimination abilities in human studies. The goal of the present study was to determine if canines show age-related decline in their ability to perform a novel simultaneous visual search task. Three groups of canines were included: a young group (N = 10; 3 to 4.5 years), an old group (N = 10; 8 to 9.5 years), and a senior group (N = 8; 11 to 15.3 years). Subjects were first tested for their ability to learn a simple two-choice discrimination task, followed by the visual search task. Attentional demands in the task were manipulated by varying the number of distracter items; dogs received an equal number of trials with either zero, one, two, or three distracters. Performance on the two-choice discrimination task varied with age, with senior canines making significantly more errors than the young. Performance accuracy on the visual search task also varied with age; senior animals were significantly impaired compared to both the young and old, and old canines were intermediate in performance between young and senior. Accuracy decreased significantly with added distracters in all age groups. These results suggest that aging impairs the ability of canines to discriminate between task-relevant and -irrelevant stimuli. This is likely to be derived from impairments in cognitive domains such as visual memory and learning and selective attention

    Human Parainfluenza 2 & 4: clinical and genetic epidemiology in the UK, 2013-2017, reveals distinct disease features and co-circulating genomic subtypes

    Get PDF
    Human Parainfluenza viruses (HPIV) are constituted by four members of the genetically distinct genera of Respirovirus (type 1 and 3) and Orthorubulavirus (type 2 and 4), causing significant upper and lower respiratory tract infections in both children and adults worldwide. However, despite frequent molecular diagnosis, they are frequently considered collectively or with HPIV4 overlooked entirely. We therefore investigated clinical and viral epidemiological distinctions of the relatively less prevalent Orthorubulaviruses HPIV2 & 4 at a regional UK hospital across four winter epidemic seasons. HPIV2 & 4 infection was observed across all age groups, but predominantly in children under 9 and adults over 40, with almost twice as many HPIV4 as HPIV2 cases. Fever, abnormal haematology, elevated C-reactive protein and hospital admission were more frequently seen in HPIV2 than HPIV4 infection. Each of the four seasonal peaks of either HPIV2, HPIV4 or both, closely matched that of RSV, occurring in November and December and preceding that of Influenza A. A subset of viruses were partially sequenced, indicating co-circulation of multiple subtypes of both HPIV2 & 4, but with little variation between each epidemic season or from limited global reference sequences

    Exclusive Photoproduction of the Cascade (Xi) Hyperons

    Full text link
    We report on the first measurement of exclusive Xi-(1321) hyperon photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The final state is identified by the missing mass in p(gamma,K+ K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state Xi-(1321)1/2+, and have estimated the total cross section for its production. We have also observed the first excited state Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss the possibilities of a search for the recently proposed Xi5-- and Xi5+ pentaquarks.Comment: submitted to Phys. Rev.
    • 

    corecore