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Abstract
In the past few decades, population genetics and phylogeographic studies have 
improved our knowledge of connectivity and population demography in marine 
environments. Studies of deep‐sea hydrothermal vent populations have identified 
barriers to gene flow, hybrid zones, and demographic events, such as historical popu-
lation expansions and contractions. These deep‐sea studies, however, used few loci, 
which limit the amount of information they provided for coalescent analysis and thus 
our ability to confidently test complex population dynamics scenarios.

In this study, we investigated population structure, demographic history, and gene 
flow directionality among four Western Pacific hydrothermal vent populations of the 
vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and 
Lau back‐arc basins, currently of great interest for deep‐sea mineral extraction. A 
total of 42 loci were sequenced from each individual using high‐throughput amplicon 
sequencing. Amplicon sequences were analyzed using both genetic variant clustering 
methods and evolutionary coalescent approaches. Like most previously investigated 
vent species in the South Pacific, L. aff. schrolli showed no genetic structure within 
basins but significant differentiation between basins. We inferred significant direc-
tional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the 
opposite direction. This study is one of the very few marine population studies using 
>10 loci for coalescent analysis and serves as a guide for future marine population 
studies.
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1  | INTRODUC TION

Genetic homogeneity and panmixia were once assumed to be 
characteristic of marine species with planktonic larvae capable of 
dispersal over long distances (Scheltema, 1986). However, genetic 
variation surveyed from marine species revealed cases where the 
extent of population subdivision exceeded expectations based on 
the predicted larval dispersal (Burton & Feldman, 1982; Palumbi, 
1994). Advances in next‐generation sequencing (NGS) technology 
have increased our ability to detect both population subdivision 
(Benestan et al., 2015; Hohenlohe et al., 2010) and, with adequate 
sampling, estimates of directional gene flow between marine 
populations.

Population subdivision can result from barriers to dispersal 
that include oceanic currents (Baums, Miller, & Hellberg, 2005; 
Thornhill, Mahon, Norenburg, & Halanych, 2008), geomorphology 
(Won, Young, Lutz, & Vrijenhoek, 2003), and vicariance events like 
the rising of the Isthmus of Panama (Bermingham & Lessios, 1993; 
Cunningham & Collins, 1994), or simply by persisting for long pe-
riods of time across a given area (Cunningham & Collins, 1998; 
Wright, 1951). At deep‐sea hydrothermal vents, comparative phy-
logeographic analyses of the mitochondrial cytochrome c oxidase 
subunit I gene (COI) have shown that tectonic history impacts pop-
ulation structure and demography (Hurtado, Lutz, & Vrijenhoek, 
2004; Plouviez et al., 2009). The addition of nuclear loci and coales-
cent analysis (Johnson, Young, Jones, Waren, & Vrijenhoek, 2006; 
Plouviez, Le Guen, Lecompte, Lallier, & Jollivet, 2010) has further 
supported the importance of tectonic history on populations and 
provided additional resolution that has strengthened our under-
standing of hybrid zones and intergradation in vent‐endemic spe-
cies (Faure, Schaeffer, & Fisher, 2015; Johnson, Won, Harvey, & 
Vrijenhoek, 2013; Plouviez et al., 2013; Zhang, Johnson, Flores, & 
Vrijenhoek, 2015). While these studies have provided important in-
sight into gene flow and population dynamics, they were unable to 
determine the direction of migration due to the small number of loci 
(4–5) examined (Faure et al., 2015; Johnson et al., 2013; Plouviez 
et al., 2010). Due to the stochastic nature of the coalescent, single‐
locus histories are often discordant and do not necessarily reflect 
population histories (Hare & Avise, 1998; Hey & Machado, 2003; 
Neigel & Avise, 1986; Palumbi & Baker, 1994). Increasing the num-
ber of individuals and loci sampled can improve inferences of pop-
ulation‐level parameters (Irwin, 2002; Maddison & Knowles, 2006).

We can now test more complex phylogeographic hypotheses and 
refine parameter estimates by increasing the depth, both in the num-
ber of individuals and the number of loci, of our genetic sequencing 
using individual tagging and high‐throughput amplicon sequencing 
(O'Neill et al., 2012). This approach can produce a large number of 
sequenced haplotypes (i.e., sequences for both alleles), which allows 
precise coalescent analysis of past and present population dynamics 
in hydrothermal vent populations.

In the Southwest Pacific, hydrothermal vents are home to a 
vast array of animals that are directly or indirectly supported by 

chemosynthesis, including Lepetodrilus limpets (Figure 1). These 
vents are distributed along multiple back‐arc basins (Figure 2). There 
is growing interest in mineral extraction at hydrothermal vents, 
especially in Manus (Papua New Guinea) and Lau (Tonga) Basins. 
Possible destruction of vents from mining necessitates an assess-
ment of genetic variation and population connectivity to serve as 
baselines prior to extraction (Van Dover, 2011). Simulation studies 
of dispersal potential in the region have predicted high connec-
tivity within most basins but varying connectivity between basins 
(Mitarai, Watanabe, Nakajima, Shchepetkin, & McWilliams, 2016; 
Suzuki, Yoshida, Watanabe, & Yamamoto, 2018). Between‐basin 
connectivity is predicted by Mitarai et al. (2016) to be predominantly 
northwest (Figure 2). Studies of genetic differentiation that included 
Manus and/or Lau Basins have revealed varying amounts of within‐ 
and between‐basin population structure (Table 1). Within basins, 
only one species showed population structure; Munidopsis lauensis 
(squat lobster) microsatellite data revealed significant differentia-
tion between samples from Solwara 1 and samples from Solwara 8 
and South Su sites (Thaler et al., 2014). In the other species stud-
ied (snails, shrimp, mussels, barnacles), no within‐basin population 
structure was detected in Manus, North Fiji, or Lau Basins (Kyuno 
et al., 2009; Plouviez et al., 2013; Suzuki et al., 2006; Thaler et al., 
2014, 2011).

Genetic differentiation between Manus and North Fiji basins 
(Figure 2) has been detected using COI in three species, Ifremeria 
nautilei snails, Bathymodiolus mussel species, and Chorocaris sp. 
2 shrimp (Kojima, Segawa, Fujiwara, Hashimoto, & Ohta, 2000; 
Kyuno et al., 2009; Thaler et al., 2014, 2011). In I.  nautilei and 
Chorocaris sp. 2, genetic differentiation between Manus and 
North Fiji was confirmed with microsatellites (Thaler et al., 2014). 

F I G U R E  1   Lepetodrilus limpets collected from the Lau Basin and 
used in this analysis
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Conversely, no population differentiation was found between 
Manus and North Fiji using mitochondrial sequences in two 
Alviniconcha species (spp. 1 and spp. 2) (Kojima et al., 2001; Suzuki 
et al., 2006). In M. lauensis, a recent selective sweep that reduced 
COI genetic diversity is suggested by one dominant haplotype 
across the Southwest Pacific (Thaler et al., 2014). Such a selective 
sweep would have removed any fingerprint of population differen-
tiation for this mitochondrial gene, but population differentiation 

between Manus and Lau was detected using nuclear microsatellite 
markers (Thaler et al., 2014). An analysis based on model testing 
for migration following isolation in I. nautilei using COI suggested 
a lack of gene flow between Manus and North Fiji/Lau, but this 
analysis was based on only a single mitochondrial locus (Thaler et 
al., 2011).

To better understand population structure and demogra-
phy of vent invertebrates in Manus and Lau, we investigated the 

F I G U R E  2   Verified hydrothermal vents in the South Pacific.Solwara 1 (SW1), Solwara 8 (SW8), Tu'i Malila (TM), and ABE were sampled 
for limpets. Arrows represent the direction of predicted larval transport between basins at 1,000 m with a PLD of 166 days (Mitarai et al., 
2016)

TA B L E  1   Population structure 
between Manus, North Fiji, and Lau 
basins. Striped boxes indicate population 
structure between two basins. Gray 
boxes indicate no detection of population 
structure between two basins

Reference Organism Data Between Basin Differen�a�on

Manus v N Fiji N Fiji v Lau

Kojima et al. 2000 Ifremeria nau�lei COI NT

Kojima et al. 2001 Alviniconcha spp. 1 COI NT

Suzuki et al. 2006 Alviniconcha spp. 2 COI NT

Kyuno et al. 2009 Bathymodiolus ND4

Bathymodiolus COI

Thaler et al. 2011 Ifremeria nau�lei COI

Ifremeria nau�lei MSAT

Thaler et al. 2014 Chorocaris sp. 2 COI NT

Chorocaris sp. 2 MSATs NT

Manus v Lau

Munidopsis lauensis COI

Munidopsis lauensis MSAT

Abbreviations: COI: cytochrome oxidase I gene; MSAT: microsatellite loci; ND4: NADH dehydro-
genase 4; NT: not tested.
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limpet species Lepetodrilus aff schrolli (Figure 1; Johnson, Waren, & 
Vrijenhoek, 2008). The high abundance of L. aff. schrolli at active vents 
in the South Pacific allowed for collection of many individuals per 
site. Furthermore, COI analysis conducted in this study expands the 
known population range of L. aff. schrolli to include the Manus Basin. 
Previously, L. aff. schrolli was reported from the Fiji and Lau basins and 
L. schrolli was reported from the Manus Basin (Johnson et al., 2008). 
Unlike previous population studies in the region that used COI and 
microsatellite loci, we assessed the potential for genetic structure and 
restricted gene flow between basins using over 15 kb of aligned DNA 
sequences from 42 single‐copy intronic and exonic loci sampled from 
93 individuals collected in the Manus and Lau Basins. Our extensive 
sequence data are more likely to meet the mutation models assumed 
in many coalescent‐based demographic inference programs that test 
models of isolation with migration (IMA2p software, Hey, 2010a; Hey, 
2010b; Sethuraman & Hey, 2016). Furthermore, 33 of our 42 loci con-
tain intronic sequences that are more variable and thus more likely to 
capture recent neutral variation which is suitable for analyzing pop-
ulation structure within a species or between closely related species 
(He & Haymer, 1997; Lessa, 1992; Palumbi & Baker, 1994). The use of 
a large multilocus dataset provided a sampling of gene genealogies 
that maximized our recovery of coalescent information representative 
of the genome. Thus, we were able to substantially expand on previ-
ous genetic work in this deep‐sea basin system.

Using both genetic population clustering and evolutionary co-
alescent approaches, we tested the hypothesis that L. aff. schrolli has 
been affected by tectonic history—through the creation of barriers 
or changes in distance among basins–similar to the pattern observed 
in other species: no genetic structure within basin, but genetic dif-
ferentiation between Manus and Lau populations. We also tested 
the hypothesis that gene flow, if any, is consistent with larval dis-
persal models predicted in the region (Mitarai et al., 2016; Suzuki et 
al., 2018).

2  | MATERIAL S AND METHODS

2.1 | Sampling

Lepetodrilus limpets were sampled at four hydrothermal vent sites 
(Figure 2; Table 2): two sites in Manus Basin (Solwara 1, Solwara 8) 
and two sites in Lau Basin (ABE, Tu'i Malila). Lepetodrilus limpets are 

known to graze bacteria on the shells of other vent invertebrates 
(e.g., Ifremeria sp. snails, Bathymodiolus sp. mussels) and rocks. 
Snails, mussels, and rocks were collected using the mechanical 
arm of remotely operated vehicles (ROVs, ST212 trenching ROV in 
Manus Basin and ROV Jason II in Lau Basin). Once aboard the ship, 
Lepetodrilus individuals were preserved at −80°C or in 95% EtOH for 
future nucleic acid extractions.

2.2 | Transcriptome and primer design

A transcriptome for L. aff. schrolli was generated as a reference to 
identify and sequence amplicon sequences from putatively single‐
copy genes. RNA was extracted from two limpets from the Lau Basin 
using a Qiagen RNA Easy Plant Mini kit following the manufacturer 
protocol (Qiagen). Prior to RNA extraction, individuals were crushed 
together for ~15 s using a bead beater. Because of their small size, 
two individuals were combined to obtain 20 μg of RNA before ribo-
somal RNA depletion for transcriptome sequencing. Depletion (yield 
200 ng of RNA), library preparation, and transcriptome sequencing 
on a Roche 454 GS‐FLX Titanium sequencer were performed by the 
Duke University Center for Genomic and Computational Biology.

Sequence reads were assembled de novo using the proprietary 
454 assembler Newbler v2.6 (Margulies et al., 2005). The resulting 
contigs were then compared by reciprocal BLAST to the closely re-
lated Lottia gigantia genome (Grigoriev et al., 2012) to identify po-
tential intron positions. Putative gene annotations were generated 
by comparing contigs to the Drosophila melanogaster genome using 
InParanoid7 (Ostlund et al., 2010). Primer pairs that flanked putative 
introns were designed using Primer 3 (Untergasser et al., 2012) with 
an annealing temperature within one or two degrees of 60°C. In ad-
dition to the primers designed to flank introns, primers to amplify 
the COI locus were included (Johnson et al., 2008). Nuclear primer 
pairs are detailed in Table S1.

2.3 | DNA amplification, library 
construction, and sequencing

Genomic DNA from 23 to 24 individuals from each of the four sites 
(Table 2) was extracted using a cetyltrimethylammonium bromide 
(CTAB) method (Doyle & Dickson, 1987). Primer pairs were tested 
on two individuals. PCR amplifications were performed in 25  μl 
volume of: 1× MyTaq reaction buffer (Bioline), 2  mM of MgCl2, 
0.05 mM of each dNTP, 0.48 μM of forward and reverse primers, 
0.5 U MyTaq DNA polymerase (Bioline), 5 μl of DNA template, and 
sterile H2O. Thermocycler conditions were as follows: 94°C/2 min, 
40 × (94°C/45 s, 60°C/1 min, 72°C/1 min), and 72°C/10 min. PCR 
amplification was visualized on agarose gels (1%) to test for success-
ful amplification and for sizing of amplicons.

Primer pairs that yielded amplicons  <  800  bp (2  ×  sequencing 
length of the 454 at the time of the study) from two test individuals 
were then deployed on the remaining 91 individuals (93 total individ-
uals). Following PCR amplification, individuals were barcoded using 
the protocol described in O'Neill et al. (2012). Labeled amplicons were 

TA B L E  2   Sample information for Lepetodrilus aff. schrolli

Sites Basin Latitude Longitude Depth (m) N

Solwara 
8 (SW8)

Manus 3.728° 151.681°E 1,720 23

Solwara 
1 (SW1)

Manus 3.789°S 152.096°E ~1,490 24

ABE Lau 20.763°S 176.191°E ~2,200 23

Tu'i 
Malila 
(TM)

Lau 21.989°S 176.568°E 1,880 23
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then pooled into two distinct libraries: amplified loci < 500 bp, and 
amplified loci of 500–800 bp. For the large amplicon library, each indi-
vidual was sheared with a Bioruptor NGS at high intensity for 12 min at 
cycles of 30 s on/90 s off. Libraries were then sent to the Duke Center 
for Genomic and Computational Biology and sequenced on a quarter 
of a Roche 454 run each. Additionally, COI loci were PCR amplified, 
following the protocol of Johnson et al. (2008) and then Sanger se-
quenced for further species clarification. PCR products were purified 
using an Exonuclease 1/Antarctic Phosphatase Enzymatic Reaction 
(New England Biolabs). Big Dye Terminator (v3.1) chemistry followed 
by AMPure magnetic beads purification (Agencourt) was used to se-
quence amplicons in both directions on an ABI 3730xl DNA analyzer 
(Applied Biosystems International).

2.4 | Allelic reconstruction

For each sequencing library, unassembled 454 reads were first 
sorted by individual barcode using an in‐house Perl script. The reads 
for each individual were trimmed, quality controlled, and sorted into 
different files by locus using SeqMan Ngen (DNASTAR). The result-
ing dataset contained one file for each successfully amplified locus 
for each individual. Amplicons in each file were phased indepen-
dently using a “read‐only” phasing method (LaBella, 2017). In brief, 
the “read‐only” method constructs every possible allele within an 
individual by joining reads that have overlapping SNPs. This method 
was chosen to avoid parameter biases that can result from failure to 
capture rare alleles when using population‐based phasing methods 
(Garrick, Sunnucks, & Dyer, 2010; Lamina, Bongardt, Kuchenhoff, & 
Heid, 2008).

Sequencing or PCR amplification error can lead to reconstructing 
more than two alleles within an individual. Erroneous alleles gener-
ated due to sequencing errors were identified by extremely low se-
quencing coverage (less than 5% of the total reads) and subsequently 
removed. We were also able to remove alleles likely to be the result 
of PCR recombination (intra‐individual) by reconstructing recombi-
nation events at every SNP position between three putative alleles 
and removing the recombinant allele. For example, given three al-
leles for an individual (A1 = ABCD, A2 = abcd, and A3 = ABcd), the 
recombinant allele can be identified as A3 since it is the only pos-
sible recombinant of any pairing (A1 vs. A2, A2 vs. A3, and A1 vs. 
A3). One (homozygous) or two (heterozygous) different consensus 
sequences were inferred for each individual. Using these methods, 
all loci sequenced had only two alleles per individual, supporting the 
hypothesis that these loci are single copy. Homozygous individuals 
were assigned two of the same sequence. Sequences from all indi-
viduals were aligned in AliView 1.09 (Larsson, 2014) using Clustal W 
2.0 (Larkin et al., 2007).

Sequence alignments were checked by eye in AliView 1.09 
(Larsson, 2014), and regions of uncertainty (e.g., repeated nucleo-
tides, indels) were excluded from subsequent analyses. Because 
the analytic methods we used do not allow for recombination, the 
species alignments were then analyzed using IMgc (Woerner, Cox, 
& Hammer, 2007). IMgc removed potential recombinant individuals, 

recombinant regions, and nucleotide sites with >2 alleles in all sam-
ples. All sites in the alignment then followed an infinite model of 
substitution. For each gene, the longest block of nonrecombinant 
aligned regions was kept for the population genetics analyses and 
reported to GenBank.

2.5 | Species analysis

Species designations were assigned by analyzing the COI loci se-
quenced using Sanger and 454 sequencing. These sequences were 
aligned in AliView 1.09 (Larsson, 2014) using Clustal W 2.0 (Larkin 
et al., 2007) with Lepetodrilus sequences from Johnson et al. (2008) 
and trimmed to minimize missing data. OTU clustering was com-
puted in Mothur version 1.41.3 using the opticlust method with 
the Matthews correlation coefficient metric and a cutoff of 0.20 
(Schloss et al., 2009). Haplotype networks were generated and visu-
alized using PopART version 1.7 (http://popart.otago.ac.nz) and the 
Median‐Joining network method (Bandelt, Forster, & Rohl, 1999).

2.6 | Population structure analysis

The number of genetically distinct populations was assessed using 
Structure 2.3.4 (Hubisz, Falush, Stephens, & Pritchard, 2009; 
Pritchard, Stephens, & Donnelly, 2000). For each locus, sequences 
were coded as haplotype numbers and individuals were assigned a 
diploid genotype. Structure uses a Bayesian Markov Chain Monte 
Carlo (MCMC) clustering method to assign individuals into K genetic 
groups. This approach both estimates the number of genetically 
distinct groups in the dataset and identifies potential migrants/ad-
mixed individuals among these groups. One to four potential genetic 
groups (K = 1–4) were tested with three replicates each using the no‐
admixture model, 100,000 iterations for the burn‐in, and 1,000,000 
iterations of data collection. Each basin was also analyzed indepen-
dently using the same parameters except testing for one to three po-
tential groups (K = 1–3). Similar sets of analyses were also performed 
using an admixture model. In the no‐admixture model, individuals 
are discretely from one population or another, while the admixture 
model allows for individuals to have mixed ancestry (Hubisz et al., 
2009; Pritchard et al., 2000). The most likely K was determined using 
ΔK (Evanno, Regnaut, & Goudet, 2005) generated by CLUMPAK 
(Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015).

Population structure was also examined using a principal compo-
nents analysis (PCA). Sequences were converted into EIGENSTRAT 
format (one genotype file, one SNP file, and one individual file) using 
a custom Perl script. Each locus was assigned to a different “chro-
mosome” to account for linkage equilibrium. The PCA was run using 
the smartpca module from EIGENSOFT v6.1.4 (Patterson, Price, & 
Reich, 2006; Price et al., 2006).

2.7 | IMa2p analysis

A model of isolation with migration was tested between the two dis-
tinct genetic groups using IMa2p (Hey, 2010a, 2010b; Sethuraman & 

http://popart.otago.ac.nz
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Hey, 2016). IMa2p is a parallel version of IMa2 that uses coalescent 
models to estimate several model parameters: (a) a splitting time pa-
rameter (t), (b) a population parameter for contemporary and ances-
tral populations (θLau, θManus θAncestral), and (c) a migration parameter 
in each direction (mManus→Lau, mLau→Manus). Parameter values are first 
unconstrained and estimated using a MCMC‐mode run. Sampled 
genealogies from this MCMC‐mode (M‐mode) run are then used 
into a Load‐genealogies mode (L‐mode) run to compare estimated 
parameters with estimates from all 25 nested demographic models 
of constrained t, θ, and m (Table 3).

Upper‐bound priors of the uniform distribution (t = 2, θ = 50 for 
all populations, and m = 5) and heating regimes among chains were 
chosen after multiple pilot runs. An infinite site model of substitution 
was chosen in accordance with the IMgc filtering that produced non-
recombining blocks of sequence. To achieve good swapping among 
the 80 Markov implemented chains, a geometric increment model of 
heating was used (−ha 0.96 −hb 0.9). After 400,000 steps of burn‐in, 
10,000,000 additional steps were performed; recording parameter 
estimates every 10 steps. Convergence was assessed using multi-
ple runs, and marginal likelihood parameter estimations for the best 
performing run are presented. From this best M‐mode run, a total of 
100,000 genealogies were recorded and loaded in L‐mode run for 
comparison with each nested demographic model. L‐mode reports 
log‐likelihood ratio (LLR) tests to identify poorer fitting models.

2.8 | Migrate‐N analysis

Migrate‐n was run according to the supplied guide (Beerli, 2009; 
Beerli & Felsenstein, 1999; Beerli & Palczewski, 2010). Briefly, we 
conducted a maximum likelihood inference starting with the default 
parameter file supplied with Migrate‐n v3.6. A second run was then 
conducted using the parameters estimated in run 1 as the starting 
values. A third run was conducted using the parameters from run 2 
as the starting values and using longer chains (short chain = 5,000 
steps and long chain = 50,000 steps) and a larger sampling increment 
(increment = 1,000). The parameter estimates from run 2 and run 3 
were consistent, and the estimates from run 3 are reported here.

3  | RESULTS

3.1 | Allelic reconstruction and data filtering 
produced 42 amplified loci

Sequences for a total of 42 PCR‐amplified nuclear intronic and ex-
onic loci averaging 237 bp were generated for population analysis of 
93 individuals (Table 2). Specifically, 16 loci were composed exclu-
sively of introns (after trimming), 9 loci were exclusively exons, and 
the remaining 17 loci contained both intronic and exonic regions. 
Exclusively exonic amplicons were the result of unsuccessful intron 
prediction but were still informative enough to include in the analy-
sis. PCR amplification success (individuals per locus) ranged from 
26% to 100%, with a median of 91%. The range of median number 
of polymorphic sites per locus was 23, ranging from 2 to 60 sites. No 

loci were discarded from our analysis due to missing data since IMa2 
analysis has been shown to be more robust with more loci despite 
missing data (Hey, Chung, & Sethuraman, 2015).

3.2 | Species analysis reveals the presence of only 
L. aff. schrolli

We used COI sequences to determine that the species in this study 
belong to the L.  aff.  schrolli species designation. We were able to 
obtain COI sequences for 81 individuals using Sanger sequencing 
and 71 individuals using the 454 sequenced PCR products. Two indi-
viduals did not have sequences long enough for further analysis but 
both of these had reciprocal best Blastn hits (Altschul et al., 1990) to 
L. aff. schrolli isolated from the Lau and Fiji basins. Three individuals 
(TM.98, SW8.3514, and SW1.97) did not amplify using either tech-
nique. Nuclear data for these three individuals were not divergent 
from the other L. aff. schrolli individuals. Therefore, it is reasonable 
to assume they belong to the same species complex.

Assembly of the COI loci sequenced using 454 suggested that 
there is significant heteroplasmy within this species complex. 
Twenty‐one individuals had two distinct mitochondrial COI haplo-
types. Mitochondrial heteroplasmy has previously been detected 
between L. elevatus north and L. elevates south (Plouviez et al., 2009). 
Analysis with Mothur identified 3 OTUs with at least 3% divergence 
in the analysis of both the Sanger sequenced and 454 sequenced 
COI loci—all individuals were assigned to the same OTU in both anal-
yses. One OTU contained all the L. aff. schrolli sequenced from the 
Mariana Trough (EU306431‐436), the second OTU contained all the 
L. schrolli sequenced from the Manus Basin (EU306437‐442), and the 
final OTU contained all the individuals sampled in this study and the 
L. aff. schrolli collected from the Fiji and Lau Basins (EU306451‐456). 
Median‐joining haplotype networks of these individuals are shown 
in Figures S1 and S2.

3.3 | Population structure analysis reveals two 
divergent populations

Using the no‐admixture model, two distinct genetic groups (K = 2, 
Figure 3a) were identified by Structure 2.3.4. (Hubisz et al., 2009; 
Pritchard et al., 2000) and assessed by the ΔK statistic (mean ln 
p(D)  =  −10387, similarity score  =  0.998). These two groups corre-
sponded to individuals sampled from the Manus and Lau basins. 
Each individual was probabilistically assigned to a basin‐specific 
cluster with a posterior probability greater than 0.98. The high 
posterior probability value for each individual suggested that the 
no‐admixture model (which is more appropriate for discrete popu-
lations) fits our data and that none of these individuals were outli-
ers. Outliers in the nonadmixed model may suggest migrants and/or 
hybrids (Pritchard et al., 2000). Similar results were produced when 
using the admixture model (results not shown), indicating that each 
individual inherited almost the entirety of its genome from the basin 
where it was sampled, and that recent migrants and/or hybrids are 
absent from our samples.
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PCA analysis clustered individuals by basin along eigenvec-
tor 1 with a correlation of −0.947 (Figure 3b). Overall, population 
differentiation between basins along the first eigenvector was 
highly significant (p‐value = 5.4 × 10−50: summed across AMOVA 
comparisons).

3.4 | Isolation and migration analysis reveals gene 
flow between divergent populations

The unconstrained model, M‐mode in IMa2p, estimated a popula-
tion splitting time parameter t of 0.29 (HiPt = 0.299, HPD95Lo‐Hi: 
0.253–0.351). Population parameters θ differed among popula-
tions (Figure 4, Table 3), with θancestral  <  θLau  <  θManus. Marginal 

posterior distributions of θ for each population were nonoverlapping 
(Figure 4). Forward in time, migration rates from Manus to Lau and 
from Lau to Manus were nonzero in M‐mode (Figure 4, Table 3). The 
migration rate from Manus to Lau was more than 3 times higher than 
in the opposite direction (mManus→Lau HiPt = 0.6525, HPD95Lo‐Hi: 
0.3375–1.048; mLau→Manus s HiPt  =  0.1725, HPD95Lo‐Hi: 0.0325–
0.3925). Marginal posterior distributions overlapped between 
the two migration parameters (Figure 4), but the probability of 
mManus→Lau > mLau→Manus was 0.983.

When compared with all possible nested‐models in L‐mode 
(Table 3), only one model was not rejected: the model of no mi-
gration from Lau to Manus (model 3: p > 0.2). This model had un-
constrained θ population parameters with a probably of 0.983 that 

TA B L E  3   Joint posterior estimates of population sizes (θ) and migration rates (m) for all possible 25‐nested models, and their associated 
joint probability [log(p)] and log‐likelihood ratio statistic (2LLR). Nonrejected model (#3) and original model are shown in gray

Model Log(p) df 2LLR θManus θLau θAncestral mLau > Manus mManus > Lau

Unconstrained θ parameters

1—unconstrained migration rates 3.649 – 8.4995 3.0956 0.6447 0.1681 0.6872

2—equal migration rates 1.493 1 4.312* 8.8544 3.2703 0.6885 0.3402 [0.3402]

3—no migration from Lau to Manus 3.001 1 1.294NS 9.4764 3.0266 0.7161 [0.00000] 0.7333

4—no migration from Manus to Lau −333.5 1 674.3*** 8.6682 3.1069 0.8352 0.4168 [0.00000]

5—no migration −1,384 2 2,776*** 8.0779 3.3201 0.7697 [0.00000] [0.00000]

θManus = θLau

6—unconstrained migration rates −116.6 1 240.6*** 5.8095 [5.8095] 0.6609 0.2886 0.3455

7—equal migration rates −117.6 2 242.5*** 5.8095 [5.8095] 0.6609 0.3140 [0.3140]

8—no migration from Lau to Manus −363.2 2 733.6*** 5.6022 [5.6022] 0.7239 [0.00000] 0.9819

9—no migration from Manus to Lau −697.9 2 1,403*** 5.5013 [5.5013] 0.8156 0.4581 [0.00000]

10—no migration −1,854 3 3,715*** 5.5550 [5.5550] 0.7697 [0.00000] [0.00000]

θManus = θAncestral

11—unconstrained migration rates −1,011 1 2,029*** 5.4378 3.0746 [5.4378] 0.2388 0.5806

12—equal migration rates −1,026 2 2,060*** 4.7744 3.4282 [4.7744] 0.3984 [0.3984]

13—no migration from Lau to Manus −1,230 2 2,467*** 5.9115 2.7526 [5.9115] [0.00000] 0.9217

14—no migration from Manus to Lau −1,827 2 3,662*** 5.1125 3.8995 [5.1125] 0.4581 [0.00000]

15—no migration −3,018 3 6,044*** 5.4144 3.3201 [5.4144] [0.00000] [0.00000]

θLau = θAncestral

16—unconstrained migration rates −231.0 1 469.4*** 8.6770 1.9417 [1.9417] 0.1895 0.9866

17—equal migration rates −326.2 2 659.8*** 8.6770 1.9417 [1.9417] 0.4465 [0.4465]

18—no migration from Lau to Manus −427.6 2 862.6*** 8.0161 2.2484 [2.2484] [0.00000] 0.9217

19—no migration from Manus to Lau −965.5 2 1,938*** 8.6682 2.3729 [2.3729] 0.4168 [0.00000]

20—no migration −2,074 3 4,156*** 9.6747 2.5210 [2.5210] [0.00000] [0.00000]

θManus = θLau = θAncestral

21—unconstrained migration rates −1,099 2 2,204*** 4.1820 [4.1820] [4.1820] 0.3109 0.5203

22—equal migration rates −1,108 3 2,223*** 4.1820 [4.1820] [4.1820] 0.3985 [0.3985]

23—no migration from Lau to Manus −1,556 3 3,118*** 4.5900 [4.5900] [4.5900] [0.00000] 0.7276

24—no migration from Manus to Lau −1,882 3 3,771*** 4.5764 [4.5764] [4.5764] 0.4581 [0.00000]

25—no migration −3,191 4 6,389*** 4.5395 [4.5395] [4.5395] [0.00000] [0.00000]

Note: Migration parameters, mLau > Manus (Lau to Manus) and mManus > Lau (Manus to Lau), are given in forward time (i.e., reversed from the backward 
coalescent time given by IMa2) to facilitate comprehension. p‐values obtained by comparing 2LLR to a χ2 distribution at the df degree of freedom: NS, 
p > 0.20; *, p < 0.05; ***, p < 0.001
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θancestral < θLau, θancestral < θManus, and θLau < θManus. All models testing 
for “no migration from Manus to Lau” were rejected (mManus→Lau > 0). 
The equal migration rate model (model 2, p < 0.05) was also rejected. 
However, model 3 of “no migration from Lau to Manus” could not be 
rejected, indicating a low or null mLau→Manus. According to both the 
MCMC and L‐modes analyses, isolation between the two basins was 
followed by low rates of migration, with a higher migration rate from 
Manus to Lau.

3.5 | Migrate‐n analysis supports gene flow 
between differentiated populations

Migrate‐n is frequently used to estimate migration among popu-
lations and effective population sizes. The software is based on a 
model of constant migration rates and effective population sizes 
over time, with no history of population splitting or other demo-
graphic changes. Simulations result in inaccurate estimates of migra-
tion rates under violations of this assumption, especially when the 
populations have recently split (see the migrate‐n website: http://
popgen.sc.fsu.edu/Migra​te/Migra​te-n.html). The migrate‐n results 
from the 42 loci predict a migration rate from Manus to Lau that 
is three and a half times higher than the migration rate from Lau 
to Manus. The analysis also reveals an effective population size in 
Manus that is twice as large as that in Lau (Figure S3). However, since 

a non‐null splitting time was found using IMa2p, we are likely vio-
lating the assumptions of Migrate‐n. Nevertheless, the results from 
Migrate‐n are consistent with those of IMa2p.

4  | DISCUSSION

In the Lau and Manus basins of the Southwest Pacific, the limpet 
L.  aff.  schrolli does not show significant within‐basin population 
structure. Between basins, there is significant population differenti-
ation in L. aff. schrolli —including a lack of first‐ or second‐generation 
migrants. Coalescent analysis of 42 single‐copy amplicons, however, 
reveals that this strong population structure does not preclude the 
presence of gene flow between distant populations after isolation. 
This finding suggests that populations of vent organisms that have 
previously been reported to be isolated between basins may have 
significant gene flow between basins that can be revealed using 
more loci in a coalescent framework.

We did not detect any population differentiation between vents 
within basins for L. aff. schrolli (Figure 3). This is not surprising given 
that in previous studies investigators have not detected within‐basin 
population structure in Maus nor Lau (Table 1) except in the case 
of M. lauensis (Thaler et al., 2014). Analysis with Structure 2.3.4 did 
not detect first‐ or second‐generation migrants which provides fur-
ther evidence for population differentiation between Manus and 
Lau basins. This is consistent with the differentiation detected be-
tween populations of M.  lauensis in Manus and Lau basins (Thaler 
et al., 2014). Additionally, between‐basin differentiation is consis-
tent with studies that show differentiation between populations 
found in Manus and North Fiji for I.  nautilei, Chorocaris sp. 2, and 
Bathymodiolus (Kojima et al., 2000; Kyuno et al., 2009; Thaler et al., 
2014, 2011). So far, only two subspecies of Alviniconcha have lacked 
between basin population differentiation between Manus and North 
Fiji (Kojima et al., 2001; Suzuki et al., 2006). In addition to detecting 
population structure, we were simultaneously able to detect a low 
rate of gene flow between Manus and Lau in L. aff. schrolli.

Population structure, detected by genetic differentiation be-
tween the two basins, does not exclude the possibility of past or 
present gene flow. The amplicon sequence data fit a coalescence 
model of isolation with migration between the Manus and Lau basin 
populations. Migration between Manus and Lau was inferred to be 
either entirely eastward (Manus → Lau) or predominately eastward 
with some westward migration (Lau → Manus). Population isolation 
between basins with some migration is consistent with the nonequi-
librium model (tested in IMa2p).

The IMa2p model of isolation with migration does not differen-
tiate between ongoing migration (after isolation) and a colonization 
event (inferred migration corresponding to traces of this coloni-
zation prior to the isolation). IMa2p could confound the effects of 
colonization from Manus to Lau with migration from Manus to Lau 
(Grosberg & Cunningham, 2001; Slatkin, 1993). The significantly 
smaller θ in the Lau basin may be consistent with such an eastward 
colonization event, but addressing this question would require 

F I G U R E  3   Structure assignment plot clustering Manus and Lau 
basins into two distinct genetic groups (a), PCA of between‐basin 
variance in Lepetodrilus aff. schrolli (b). Manus and Lau individuals 
are represented in black and gray, respectively

(a)

(b)

http://popgen.sc.fsu.edu/Migrate/Migrate-n.html
http://popgen.sc.fsu.edu/Migrate/Migrate-n.html
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sampling additional locations or explicit tests of both models. In both 
colonization and migration scenarios, past gene flow has been pre-
dominantly or exclusively eastward.

To determine whether our observations are consistent with 
oceanographic data, we compared our findings with simulations of 
connectivity in the region. First, Suzuki et al. (2018) predicted dis-
persal between vents within both the Manus and Lau basins, but 
no dispersal directly between any two vents between the Manus 
and Lau basins. Additionally, the mean recovery time of vents near 
Solwara 1 and Solwara 8 is 3–5 times longer than those in Lau—this 
implies limited connectivity flowing into the Manus Basin (Suzuki et 
al., 2018). Second, we compared our results to Mitarai et al. (2016) 
who estimated the rate and direction of potential larval dispersal 
among western Pacific back‐arc basins, including our study sites and 
the basins that lie between them (Figure 2). Assuming a relatively 

long pelagic larval duration (PLD) of 170 days at a depth of 1,000 m, 
Mitarai et al. (2016) concluded that all basins in the region could be 
connected by larvae via stepping‐stones. This dispersal, however, 
is predicted to be exclusively westward between the Solomon and 
Woodlark basins (Figure 2). For these basins to serve as stepping‐
stones for migration from Manus to Lau, larvae would need to be 
transported eastward. Furthermore, some of these stepping‐stones 
may only be connected by larvae once every hundred thousand 
years. Similar results were found with the more rapid currents at 
500 m with a shorter PLD of 90 days. When the PLD was shortened 
to 83 days at 1,000 m or 43 days at 500 m, no dispersal was pre-
dicted between Woodlark/Solomon and Solomon/North Fiji, break-
ing the stepping‐stone chain between Manus and Lau.

Gene flow between Manus and Lau could result from a long PLD 
for L. aff. schrolli, ocean current anomalies, or even unknown vent 

F I G U R E  4   IMa2p marginal distributions for the population splitting time t (a), the effective population sizes θ (b), and the migration rate 
parameters in forward time m (c)
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sites that serve as stepping‐stones. For mollusks that inhabit deep‐
sea chemosynthetic environments, estimates of PLD are scarce. The 
PLD for the planktotrophic larvae of Bathymodiolus childressi was 
estimated to be up to 13 months in B. childressi mussels (Arellano 
& Young, 2009) and over 8 months in Bathynerita naticoidea snails 
(Van Gaest, 2006). It has been suggested that colder deep‐sea tem-
peratures and limited food availability lowers the metabolism of 
lecithotrophic larvae facilitating long PLDs and dispersal distances 
(Young, Sewell, Tyler, & Metaxas, 1997). Lepetodrilus spp. larvae are 
generally considered lecithotrophic (Berg, 1985; Craddock, Lutz, & 
Vrijenhoek, 1997; Tyler et al., 2008), even though their small oo-
cytes are comparable with those of species with planktotrophic lar-
vae (Tyler et al., 2008). Furthermore, Lepetodrilus limpets can live in 
habitats peripheral to vents where they may rely on grazing (Bates, 
2007), albeit in lower densities (Bates, Tunnicliffe, & Lee, 2005). Due 
to the low density of nonvent populations, it is unlikely they contrib-
ute significantly to gene flow between densely populated vent sites.

Our analyses suggest that genetic differentiation between 
Manus and Lau detected in other species using COI and/or microsat-
ellite markers (Table 1) does not exclude the possibility of gene flow 
between basins in those species. Using 42 sequenced gene regions 
in a coalescent framework allowed us to infer directional gene flow 
in the presence of genetic differentiation for L. aff. schrolli. Sampling 
additional Western Pacific basins, such as Woodlark, Solomon, New 
Hebrides, and North Fiji, would provide a better understanding of 
connectivity in the region. Furthermore, a timescale for divergence 
between populations in the Manus and Lau basins could be obtained 
by expanding amplicon sequencing to a pair of limpet species where 
the divergence time can be estimated based on geologic events. For 
example, the limpet species Lepetodrilus fucensis and Lepetodrilus 
gordensis were putatively separated by the formation of the Blanco 
Transformation Fault between 5 and 18  MY ago (Johnson et al., 
2006). Amplicon sequences from the same loci in L.  fucensis and 
L. gordensis would allow us to convert the IMa estimates of diver-
gence in generations to years.

Based on the oceanographic currents model by Mitarai et al. 
(2016), we predict L.  aff.  schrolli in Manus and Woodlark Basins are 
genetically connected while also differentiated from a New Hebrides‐
North Fiji‐Lau Basin group. Samples from Solomon could help deter-
mine the mechanism behind differentiation between Manus and Lau 
in the presence of gene flow. Nevertheless, this analysis suggests that 
gene flow occurs within the Western Pacific hydrothermal vent fields: 
We detect historical gene flow between Manus and Lau and expand 
the species range of L. aff. schrolli to include the Manus Basin. This con-
clusion, however, cannot be extended to other species without further 
analysis. Estimates of gene flow and population connectivity could be 
used to predict possible species loss due to mining in the region. With 
42 loci, the present study is also one of the very few marine popula-
tion studies using >10 nuclear loci in a coalescent theory framework 
(Hurt, Silliman, Anker, & Knowlton, 2013; Jang et al., 2016; Smith et 
al., 2015; Weber, Merigot, Valiere, & Chenuil, 2015). Given the breadth 
and depth of this study, it should serve a case study for future work on 
phylogeography in marine habitats.
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