128 research outputs found

    RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells

    Get PDF
    Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the calcineurin pathway in cells. It is expressed as two isoforms in vertebrates: RCAN1.1 is constitutively expressed in most tissues, whereas transcription of RCAN1.4 is induced by several stimuli that activate the calcineurin-NFAT pathway. RCAN1.4 is highly upregulated in response to VEGF in human endothelial cells in contrast to RCAN1.1 and is essential for efficient endothelial cell migration and tubular morphogenesis. Here, we show that RCAN1.4 has a role in the regulation of agonist-stimulated VEGFR-2 internalisation and establishment of endothelial cell polarity. siRNA-mediated gene silencing revealed that RCAN1 plays a vital role in regulating VEGF-mediated cytoskeletal reorganisation and directed cell migration and sprouting angiogenesis. Adenoviral-mediated overexpression of RCAN1.4 resulted in increased endothelial cell migration. Antisense-mediated morpholino silencing of the zebrafish RCAN1.4 orthologue revealed a disrupted vascular development further confirming a role for the RCAN1.4 isoform in regulating vascular endothelial cell physiology. Our data suggest that RCAN1.4 plays a novel role in regulating endothelial cell migration by establishing endothelial cell polarity in response to VEGF

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio

    Resolving inequalities in care? Reduced mortality in the elderly after acute coronary syndromes. The Myocardial Ischaemia National Audit Project 2003-2010

    No full text
    Aims: To examine age-dependent in-hospital mortality for hospitalization with acute coronary syndromes (ACS) in England and Wales. Methods and results: Mixed-effects regression analysis using data from 616 011 ACS events at 255 hospitals as recorded in the Myocardial Ischemia National Audit Project (MINAP) 2003-2010; 102 415 (16.7%) patients were aged /=85 years. Patients >/=85 years with ST-elevation myocardial infarction (STEMI) were less likely to receive emergency reperfusion therapy than those /= 85 years, in-hospital mortality reduced from 30.1% in 2003 to 19.4% in 2010 (RR = 0.54, 95% CI: 0.38-0.75, P/= 85 years, from 31.5% in 2003 to 20.4% in 2010 (RR = 0.56, 95% CI: 0.42-0.73, P< 0.001). Findings were upheld after multi-level adjustment (base = 2003): male STEMI 2010 OR = 0.60, 95% CI: 0.48-0.75; female STEMI 2010 OR = 0.55, 95% CI: 0.42-0.71; male NSTEMI OR = 0.50, 95% CI: 0.42-0.60; female NSTEMI OR = 0.49, 95% CI: 0.40-0.59. Conclusion: For patients hospitalized with ACS in England and Wales, there have been substantial reductions in in-hospital mortality rates from 2003 to 2010 across all age groups. The temporal improvements in mortality were similar for sex and type of acute myocardial infarction. Age-dependent inequalities in the management of ACS were apparen

    A Decade Later, How Much of Rwanda's Musculoskeletal Impairment Is Caused by the War in 1994 and by Related Violence?

    Get PDF
    BACKGROUND: In 1994 there was a horrific genocide in Rwanda following years of tension, resulting in the murder of at least 800,000 people. Although many people were injured in addition to those killed, no attempt has been made to assess the lasting burden of physical injuries related to these events. The aim of this study was to estimate the current burden of musculoskeletal impairment (MSI) attributable to the 1994 war and related violence. METHODOLOGY/PRINCIPAL FINDINGS: A national cross-sectional survey of MSI was conducted in Rwanda. 105 clusters of 80 people were selected through probability proportionate to size sampling. Households within clusters were selected through compact segment sampling. Enumerated people answered a seven-question screening test to assess whether they might have an MSI. Those who were classed as potential cases in the screening test were examined and interviewed by a physiotherapist, using a standard protocol that recorded the site, nature, cause, and severity of the MSI. People with MSI due to trauma were asked whether this trauma occurred during the 1990-1994 war or during the episodes that preceded or followed this war. Out of 8,368 people enumerated, 6,757 were available for screening and examination (80.8%). 352 people were diagnosed with an MSI (prevalence=5.2%, 95% CI=4.5-5.9%). 106 cases of MSI (30.6%) were classified as resulting from trauma, based on self-report and the physiotherapist's assessment. Of these, 14 people (13.2%) reported that their trauma-related MSI occurred during the 1990-1994 war, and a further 7 (6.6%) that their trauma-related MSI occurred during the violent episodes that preceded and followed the war, giving an overall prevalence of trauma-related MSI related to the 1990-1994 war of 0.3% (95% CI=0.2-0.4%). CONCLUSIONS/SIGNIFICANCE: A decade on, the overall prevalence of MSI was relatively high in Rwanda but few cases appeared to be the result of the 1994 war or related violence

    Use of multi-trait and random regression models to identify genetic variation in tolerance to porcine reproductive and respiratory syndrome virus

    Get PDF
    Background: A host can adopt two response strategies to infection: resistance (reduce pathogen load) and tolerance (minimize impact of infection on performance). Both strategies may be under genetic control and could thus be targeted for genetic improvement. Although there is evidence that supports a genetic basis for resistance to porcine reproductive and respiratory syndrome (PRRS), it is not known whether pigs also differ genetically in tolerance. We determined to what extent pigs that have been shown to vary genetically in resistance to PRRS also exhibit genetic variation in tolerance. Multi-trait linear mixed models and random regression sire models were fitted to PRRS Host Genetics Consortium data from 1320 weaned pigs (offspring of 54 sires) that were experimentally infected with a virulent strain of PRRS virus to obtain genetic parameter estimates for resistance and tolerance. Resistance was defined as the inverse of within-host viral load (VL) from 0 to 21 (VL21) or 0 to 42 (VL42) days post-infection and tolerance as the slope of the reaction-norm of average daily gain (ADG21, ADG42) on VL21 or VL42. Results: Multi-trait analysis of ADG associated with either low or high VL was not indicative of genetic variation in tolerance. Similarly, random regression models for ADG21 and ADG42 with a tolerance slope fitted for each sire did not result in a better fit to the data than a model without genetic variation in tolerance. However, the distribution of data around average VL suggested possible confounding between level and slope estimates of the regression lines. Augmenting the data with simulated growth rates of non-infected half-sibs (ADG0) helped resolve this statistical confounding and indicated that genetic variation in tolerance to PRRS may exist if genetic correlations between ADG0 and ADG21 or ADG42 are low to moderate. Conclusions: Evidence for genetic variation in tolerance of pigs to PRRS was weak when based on data from infected piglets only. However, simulations indicated that genetic variance in tolerance may exist and could be detected if comparable data on uninfected relatives were available. In conclusion, of the two defense strategies, genetics of tolerance is more difficult to elucidate than genetics of resistance.</p

    The Neurokinin 1 Receptor Antagonist, Ezlopitant, Reduces Appetitive Responding for Sucrose and Ethanol

    Get PDF
    Abstract Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers

    The Coevolution of Virulence: Tolerance in Perspective

    Get PDF
    Coevolutionary interactions, such as those between host and parasite, predator and prey, or plant and pollinator, evolve subject to the genes of both interactors. It is clear, for example, that the evolution of pollination strategies can only be understood with knowledge of both the pollinator and the pollinated. Studies of the evolution of virulence, the reduction in host fitness due to infection, have nonetheless tended to focus on parasite evolution. Host-centric approaches have also been proposed—for example, under the rubric of “tolerance”, the ability of hosts to minimize virulence without necessarily minimizing parasite density. Within the tolerance framework, however, there is room for more comprehensive measures of host fitness traits, and for fuller consideration of the consequences of coevolution. For example, the evolution of tolerance can result in changed selection on parasite populations, which should provoke parasite evolution despite the fact that tolerance is not directly antagonistic to parasite fitness. As a result, consideration of the potential for parasite counter-adaptation to host tolerance—whether evolved or medially manipulated—is essential to the emergence of a cohesive theory of biotic partnerships and robust disease control strategies

    The Initial-Final Mass Relation among White Dwarfs in Wide Binaries

    Get PDF
    We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main sequence star and a white dwarf. The temperature and gravity of each white dwarf was measured by fitting theoretical model atmospheres to the observed spectrum using a χ2\chi^{2} fitting algorithm. The cooling time and mass was obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main sequence component to an uncertainty of about 0.17 dex in log \textit{t} The difference between the total age and white dwarf cooling time is taken as the main sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 - 2 M_{\odot}. Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences - at least among progenitors with masses in the range of 1 - 2 M_{\odot}. A comparison of our observations to theoretical models suggests that low mass stars preferentially lose mass on the red giant branch.Comment: 28 pages, 8 figures, accepted for publication in Ap

    Toward a Theory of Child Well-Being

    Get PDF
    Assuring the well-being of children has emerged over the past several decades as an important goal for health and social policymakers. Although the concept of child well-being has been operationalized and measured in different ways by different child-serving entities, there are few unifying theories that could undergird and inform these various conceptual and measurement efforts. In this paper, we attempt to construct a theory of child well-being. We first review the social and policy history of the concept of child well-being, and briefly review its measurement based on these conceptualizations. We then examine three types of theories of well-being extant in philosophy - mental states theories, desire-based theories and needs-based theories - and investigate their suitability to serve as prototypes of a theory of child well-being. We develop a constraint that child well-being is important in and of itself and not merely as a way station to future adult well-being (we call this a non-reduction constraint). Using this constraint, we identify the limitations of each of the three sets of theories to serve as a basis for a theory of child well-being. Based on a developmentalist approach, we then articulate a theory of child well-being that contains two conditions. First, a child's stage-appropriate capacities that equip her for successful adulthood, given her environment; and, second, an engagement with the world in child-appropriate ways. We conclude by reviewing seven implications of this theoretical approach for the measurement of child well-being. Key Words Child well-being, philosophy, social policy, child developmentNoneThis is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s11205-014-0665-

    Identifying Determinants of Cullin Binding Specificity Among the Three Functionally Different Drosophila melanogaster Roc Proteins via Domain Swapping

    Get PDF
    BACKGROUND: Cullin-dependent E3 ubiquitin ligases (CDL) are key regulators of protein destruction that participate in a wide range of cell biological processes. The Roc subunit of CDL contains an evolutionarily conserved RING domain that binds ubiquitin charged E2 and is essential for ubiquitylation. Drosophila melanogaster contains three highly related Roc proteins: Roc1a and Roc2, which are conserved in vertebrates, and Roc1b, which is specific to Drosophila. Our previous genetic data analyzing Roc1a and Roc1b mutants suggested that Roc proteins are functionally distinct, but the molecular basis for this distinction is not known. METHODOLOGY/PRINCIPAL FINDINGS: Using co-immunoprecipitation studies we show that Drosophila Roc proteins bind specific Cullins: Roc1a binds Cul1-4, Roc1b binds Cul3, and Roc2 binds Cul5. Through domain swapping experiments, we demonstrate that Cullin binding specificity is strongly influenced by the Roc NH(2)-terminal domain, which forms an inter-molecular beta sheet with the Cullin. Substitution of the Roc1a RING domain with that of Roc1b results in a protein with similar Cullin binding properties to Roc1a that is active as an E3 ligase but cannot complement Roc1a mutant lethality, indicating that the identity of the RING domain can be an important determinant of CDL function. In contrast, the converse chimeric protein with a substitution of the Roc1b RING domain with that of Roc1a can rescue the male sterility of Roc1b mutants, but only when expressed from the endogenous Roc1b promoter. We also identified mutations of Roc2 and Cul5 and show that they cause no overt developmental phenotype, consistent with our finding that Roc2 and Cul5 proteins are exclusive binding partners, which others have observed in human cells as well. CONCLUSIONS: The Drosophila Roc proteins are highly similar, but have diverged during evolution to bind a distinct set of Cullins and to utilize RING domains that have overlapping, but not identical, function in vivo
    corecore